MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitlinv Structured version   Visualization version   GIF version

Theorem unitlinv 19542
Description: A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1 𝑈 = (Unit‘𝑅)
unitinvcl.2 𝐼 = (invr𝑅)
unitinvcl.3 · = (.r𝑅)
unitinvcl.4 1 = (1r𝑅)
Assertion
Ref Expression
unitlinv ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = 1 )

Proof of Theorem unitlinv
StepHypRef Expression
1 unitinvcl.1 . . . 4 𝑈 = (Unit‘𝑅)
2 eqid 2738 . . . 4 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
31, 2unitgrp 19532 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
41, 2unitgrpbas 19531 . . . 4 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
51fvexi 6682 . . . . 5 𝑈 ∈ V
6 eqid 2738 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 unitinvcl.3 . . . . . . 7 · = (.r𝑅)
86, 7mgpplusg 19355 . . . . . 6 · = (+g‘(mulGrp‘𝑅))
92, 8ressplusg 16708 . . . . 5 (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
105, 9ax-mp 5 . . . 4 · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
11 eqid 2738 . . . 4 (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))
12 unitinvcl.2 . . . . 5 𝐼 = (invr𝑅)
131, 2, 12invrfval 19538 . . . 4 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
144, 10, 11, 13grplinv 18263 . . 3 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
153, 14sylan 583 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
16 unitinvcl.4 . . . 4 1 = (1r𝑅)
171, 2, 16unitgrpid 19534 . . 3 (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
1817adantr 484 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
1915, 18eqtr4d 2776 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  Vcvv 3397  cfv 6333  (class class class)co 7164  s cress 16580  +gcplusg 16661  .rcmulr 16662  0gc0g 16809  Grpcgrp 18212  mulGrpcmgp 19351  1rcur 19363  Ringcrg 19409  Unitcui 19504  invrcinvr 19536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-tpos 7914  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-0g 16811  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-grp 18215  df-minusg 18216  df-mgp 19352  df-ur 19364  df-ring 19411  df-oppr 19488  df-dvdsr 19506  df-unit 19507  df-invr 19537
This theorem is referenced by:  dvrcan1  19556  drnginvrl  19633  subrginv  19663  subrgunit  19665  unitrrg  20178  matinv  21421  matunit  21422  slesolinv  21424  nrginvrcnlem  23437  uc1pmon1p  24896  ornglmullt  31075  rhmunitinv  31090  kerunit  31091  lincresunit3lem3  45333
  Copyright terms: Public domain W3C validator