Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitlinv | Structured version Visualization version GIF version |
Description: A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
unitinvcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitinvcl.2 | ⊢ 𝐼 = (invr‘𝑅) |
unitinvcl.3 | ⊢ · = (.r‘𝑅) |
unitinvcl.4 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
unitlinv | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
3 | 1, 2 | unitgrp 19909 | . . 3 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
4 | 1, 2 | unitgrpbas 19908 | . . . 4 ⊢ 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
5 | 1 | fvexi 6788 | . . . . 5 ⊢ 𝑈 ∈ V |
6 | eqid 2738 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
7 | unitinvcl.3 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
8 | 6, 7 | mgpplusg 19724 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘𝑅)) |
9 | 2, 8 | ressplusg 17000 | . . . . 5 ⊢ (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))) |
10 | 5, 9 | ax-mp 5 | . . . 4 ⊢ · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)) |
11 | eqid 2738 | . . . 4 ⊢ (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)) | |
12 | unitinvcl.2 | . . . . 5 ⊢ 𝐼 = (invr‘𝑅) | |
13 | 1, 2, 12 | invrfval 19915 | . . . 4 ⊢ 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
14 | 4, 10, 11, 13 | grplinv 18628 | . . 3 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
15 | 3, 14 | sylan 580 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
16 | unitinvcl.4 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
17 | 1, 2, 16 | unitgrpid 19911 | . . 3 ⊢ (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
18 | 17 | adantr 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
19 | 15, 18 | eqtr4d 2781 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 (class class class)co 7275 ↾s cress 16941 +gcplusg 16962 .rcmulr 16963 0gc0g 17150 Grpcgrp 18577 mulGrpcmgp 19720 1rcur 19737 Ringcrg 19783 Unitcui 19881 invrcinvr 19913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 |
This theorem is referenced by: dvrcan1 19933 drnginvrl 20010 subrginv 20040 subrgunit 20042 unitrrg 20564 matinv 21826 matunit 21827 slesolinv 21829 nrginvrcnlem 23855 uc1pmon1p 25316 ornglmullt 31506 rhmunitinv 31521 kerunit 31522 lincresunit3lem3 45815 |
Copyright terms: Public domain | W3C validator |