| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitinvcl | Structured version Visualization version GIF version | ||
| Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitinvcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitinvcl.2 | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| unitinvcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitinvcl.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 3 | 1, 2 | unitgrp 20286 | . 2 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
| 4 | 1, 2 | unitgrpbas 20285 | . . 3 ⊢ 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 5 | unitinvcl.2 | . . . 4 ⊢ 𝐼 = (invr‘𝑅) | |
| 6 | 1, 2, 5 | invrfval 20292 | . . 3 ⊢ 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 7 | 4, 6 | grpinvcl 18884 | . 2 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
| 8 | 3, 7 | sylan 580 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ↾s cress 17159 Grpcgrp 18830 mulGrpcmgp 20043 Ringcrg 20136 Unitcui 20258 invrcinvr 20290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 |
| This theorem is referenced by: ringinvcl 20295 unitdvcl 20308 dvrdir 20315 rdivmuldivd 20316 rhmunitinv 20414 subrgugrp 20494 drnginvrn0 20657 gzrngunit 21358 uc1pmon1p 26073 ig1peu 26096 sum2dchr 27201 dvrcan5 33186 dvdsruasso2 33333 lidlunitel 33370 ply1unit 33520 fldhmf1 42063 |
| Copyright terms: Public domain | W3C validator |