Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitrinv | Structured version Visualization version GIF version |
Description: A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
unitinvcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitinvcl.2 | ⊢ 𝐼 = (invr‘𝑅) |
unitinvcl.3 | ⊢ · = (.r‘𝑅) |
unitinvcl.4 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
unitrinv | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | eqid 2737 | . . . 4 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
3 | 1, 2 | unitgrp 19977 | . . 3 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
4 | 1, 2 | unitgrpbas 19976 | . . . 4 ⊢ 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
5 | 1 | fvexi 6825 | . . . . 5 ⊢ 𝑈 ∈ V |
6 | eqid 2737 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
7 | unitinvcl.3 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
8 | 6, 7 | mgpplusg 19792 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘𝑅)) |
9 | 2, 8 | ressplusg 17070 | . . . . 5 ⊢ (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))) |
10 | 5, 9 | ax-mp 5 | . . . 4 ⊢ · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)) |
11 | eqid 2737 | . . . 4 ⊢ (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)) | |
12 | unitinvcl.2 | . . . . 5 ⊢ 𝐼 = (invr‘𝑅) | |
13 | 1, 2, 12 | invrfval 19983 | . . . 4 ⊢ 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
14 | 4, 10, 11, 13 | grprinv 18698 | . . 3 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
15 | 3, 14 | sylan 580 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
16 | unitinvcl.4 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
17 | 1, 2, 16 | unitgrpid 19979 | . . 3 ⊢ (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
18 | 17 | adantr 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
19 | 15, 18 | eqtr4d 2780 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ‘cfv 6465 (class class class)co 7315 ↾s cress 17011 +gcplusg 17032 .rcmulr 17033 0gc0g 17220 Grpcgrp 18646 mulGrpcmgp 19788 1rcur 19805 Ringcrg 19851 Unitcui 19949 invrcinvr 19981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-tpos 8089 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-minusg 18650 df-mgp 19789 df-ur 19806 df-ring 19853 df-oppr 19930 df-dvdsr 19951 df-unit 19952 df-invr 19982 |
This theorem is referenced by: 1rinv 19989 0unit 19990 dvrid 19998 drnginvrr 20083 subrguss 20111 subrginv 20112 subrgunit 20114 matunit 21899 slesolinvbi 21902 nminvr 23905 nrginvrcnlem 23927 ply1divalg 25374 dchrn0 26470 dvrcan5 31598 fldhmf1 40303 invginvrid 45955 |
Copyright terms: Public domain | W3C validator |