Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle2 Structured version   Visualization version   GIF version

Theorem ivthle2 24102
 Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthle2.9 (𝜑 → ((𝐹𝐵) ≤ 𝑈𝑈 ≤ (𝐹𝐴)))
Assertion
Ref Expression
ivthle2 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivthle2
StepHypRef Expression
1 ioossicc 12831 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2 ivth.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
32adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐴 ∈ ℝ)
4 ivth.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐵 ∈ ℝ)
6 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
76adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝑈 ∈ ℝ)
8 ivth.4 . . . . . . 7 (𝜑𝐴 < 𝐵)
98adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐴 < 𝐵)
10 ivth.5 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
1110adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → (𝐴[,]𝐵) ⊆ 𝐷)
12 ivth.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1312adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 714 . . . . . 6 (((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 simpr 488 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
173, 5, 7, 9, 11, 13, 15, 16ivth2 24100 . . . . 5 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
18 ssrexv 3984 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈))
191, 17, 18mpsyl 68 . . . 4 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
2019anassrs 471 . . 3 (((𝜑 ∧ (𝐹𝐵) < 𝑈) ∧ 𝑈 < (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
212rexrd 10698 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
224rexrd 10698 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
232, 4, 8ltled 10795 . . . . . 6 (𝜑𝐴𝐵)
24 lbicc2 12862 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2521, 22, 23, 24syl3anc 1368 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
26 eqcom 2805 . . . . . . 7 ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝑐))
27 fveq2 6655 . . . . . . . 8 (𝑐 = 𝐴 → (𝐹𝑐) = (𝐹𝐴))
2827eqeq2d 2809 . . . . . . 7 (𝑐 = 𝐴 → (𝑈 = (𝐹𝑐) ↔ 𝑈 = (𝐹𝐴)))
2926, 28syl5bb 286 . . . . . 6 (𝑐 = 𝐴 → ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝐴)))
3029rspcev 3572 . . . . 5 ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3125, 30sylan 583 . . . 4 ((𝜑𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3231adantlr 714 . . 3 (((𝜑 ∧ (𝐹𝐵) < 𝑈) ∧ 𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
33 ivthle2.9 . . . . . 6 (𝜑 → ((𝐹𝐵) ≤ 𝑈𝑈 ≤ (𝐹𝐴)))
3433simprd 499 . . . . 5 (𝜑𝑈 ≤ (𝐹𝐴))
35 fveq2 6655 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
3635eleq1d 2874 . . . . . . 7 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
3714ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3836, 37, 25rspcdva 3574 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℝ)
396, 38leloed 10790 . . . . 5 (𝜑 → (𝑈 ≤ (𝐹𝐴) ↔ (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴))))
4034, 39mpbid 235 . . . 4 (𝜑 → (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴)))
4140adantr 484 . . 3 ((𝜑 ∧ (𝐹𝐵) < 𝑈) → (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴)))
4220, 32, 41mpjaodan 956 . 2 ((𝜑 ∧ (𝐹𝐵) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
43 ubicc2 12863 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4421, 22, 23, 43syl3anc 1368 . . 3 (𝜑𝐵 ∈ (𝐴[,]𝐵))
45 fveqeq2 6664 . . . 4 (𝑐 = 𝐵 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝐵) = 𝑈))
4645rspcev 3572 . . 3 ((𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4744, 46sylan 583 . 2 ((𝜑 ∧ (𝐹𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4833simpld 498 . . 3 (𝜑 → (𝐹𝐵) ≤ 𝑈)
49 fveq2 6655 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
5049eleq1d 2874 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
5150, 37, 44rspcdva 3574 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ)
5251, 6leloed 10790 . . 3 (𝜑 → ((𝐹𝐵) ≤ 𝑈 ↔ ((𝐹𝐵) < 𝑈 ∨ (𝐹𝐵) = 𝑈)))
5348, 52mpbid 235 . 2 (𝜑 → ((𝐹𝐵) < 𝑈 ∨ (𝐹𝐵) = 𝑈))
5442, 47, 53mpjaodan 956 1 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  ∃wrex 3107   ⊆ wss 3883   class class class wbr 5034  ‘cfv 6332  (class class class)co 7145  ℂcc 10542  ℝcr 10543  ℝ*cxr 10681   < clt 10682   ≤ cle 10683  (,)cioo 12746  [,]cicc 12749  –cn→ccncf 23522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622  ax-mulf 10624 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-q 12357  df-rp 12398  df-xneg 12515  df-xadd 12516  df-xmul 12517  df-ioo 12750  df-icc 12753  df-fz 12906  df-fzo 13049  df-seq 13385  df-exp 13446  df-hash 13707  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-starv 16592  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-unif 16600  df-hom 16601  df-cco 16602  df-rest 16708  df-topn 16709  df-0g 16727  df-gsum 16728  df-topgen 16729  df-pt 16730  df-prds 16733  df-xrs 16787  df-qtop 16792  df-imas 16793  df-xps 16795  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-submnd 17969  df-mulg 18238  df-cntz 18460  df-cmn 18921  df-psmet 20104  df-xmet 20105  df-met 20106  df-bl 20107  df-mopn 20108  df-cnfld 20113  df-top 21540  df-topon 21557  df-topsp 21579  df-bases 21592  df-cn 21873  df-cnp 21874  df-tx 22208  df-hmeo 22401  df-xms 22968  df-ms 22969  df-tms 22970  df-cncf 23524 This theorem is referenced by:  ivthicc  24103  recosf1o  25171
 Copyright terms: Public domain W3C validator