| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ivthle2 | Structured version Visualization version GIF version | ||
| Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivthle2.9 | ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) |
| Ref | Expression |
|---|---|
| ivthle2 | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc 13450 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 2 | ivth.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 ∈ ℝ) |
| 4 | ivth.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐵 ∈ ℝ) |
| 6 | ivth.3 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝑈 ∈ ℝ) |
| 8 | ivth.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 < 𝐵) |
| 10 | ivth.5 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → (𝐴[,]𝐵) ⊆ 𝐷) |
| 12 | ivth.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
| 14 | ivth.8 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
| 15 | 14 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) | |
| 17 | 3, 5, 7, 9, 11, 13, 15, 16 | ivth2 25408 | . . . . 5 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
| 18 | ssrexv 4028 | . . . . 5 ⊢ ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈)) | |
| 19 | 1, 17, 18 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 20 | 19 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 < (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 21 | 2 | rexrd 11285 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 22 | 4 | rexrd 11285 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 23 | 2, 4, 8 | ltled 11383 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 24 | lbicc2 13481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 25 | 21, 22, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 26 | eqcom 2742 | . . . . . . 7 ⊢ ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝑐)) | |
| 27 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑐 = 𝐴 → (𝐹‘𝑐) = (𝐹‘𝐴)) | |
| 28 | 27 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝑐 = 𝐴 → (𝑈 = (𝐹‘𝑐) ↔ 𝑈 = (𝐹‘𝐴))) |
| 29 | 26, 28 | bitrid 283 | . . . . . 6 ⊢ (𝑐 = 𝐴 → ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝐴))) |
| 30 | 29 | rspcev 3601 | . . . . 5 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 31 | 25, 30 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 32 | 31 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 33 | ivthle2.9 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) | |
| 34 | 33 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ (𝐹‘𝐴)) |
| 35 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 36 | 35 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
| 37 | 14 | ralrimiva 3132 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
| 38 | 36, 37, 25 | rspcdva 3602 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 39 | 6, 38 | leloed 11378 | . . . . 5 ⊢ (𝜑 → (𝑈 ≤ (𝐹‘𝐴) ↔ (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴)))) |
| 40 | 34, 39 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
| 41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
| 42 | 20, 32, 41 | mpjaodan 960 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 43 | ubicc2 13482 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
| 44 | 21, 22, 23, 43 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 45 | fveqeq2 6885 | . . . 4 ⊢ (𝑐 = 𝐵 → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘𝐵) = 𝑈)) | |
| 46 | 45 | rspcev 3601 | . . 3 ⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 47 | 44, 46 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 48 | 33 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ≤ 𝑈) |
| 49 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
| 50 | 49 | eleq1d 2819 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐵) ∈ ℝ)) |
| 51 | 50, 37, 44 | rspcdva 3602 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
| 52 | 51, 6 | leloed 11378 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ↔ ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈))) |
| 53 | 48, 52 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈)) |
| 54 | 42, 47, 53 | mpjaodan 960 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 (,)cioo 13362 [,]cicc 13365 –cn→ccncf 24820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-cnp 23166 df-tx 23500 df-hmeo 23693 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 |
| This theorem is referenced by: ivthicc 25411 recosf1o 26496 |
| Copyright terms: Public domain | W3C validator |