Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ivthle2 | Structured version Visualization version GIF version |
Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivthle2.9 | ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) |
Ref | Expression |
---|---|
ivthle2 | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 13094 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
2 | ivth.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 ∈ ℝ) |
4 | ivth.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐵 ∈ ℝ) |
6 | ivth.3 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝑈 ∈ ℝ) |
8 | ivth.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 < 𝐵) | |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 < 𝐵) |
10 | ivth.5 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → (𝐴[,]𝐵) ⊆ 𝐷) |
12 | ivth.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
14 | ivth.8 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
15 | 14 | adantlr 711 | . . . . . 6 ⊢ (((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) | |
17 | 3, 5, 7, 9, 11, 13, 15, 16 | ivth2 24524 | . . . . 5 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
18 | ssrexv 3984 | . . . . 5 ⊢ ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈)) | |
19 | 1, 17, 18 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
20 | 19 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 < (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
21 | 2 | rexrd 10956 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
22 | 4 | rexrd 10956 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
23 | 2, 4, 8 | ltled 11053 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
24 | lbicc2 13125 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
25 | 21, 22, 23, 24 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
26 | eqcom 2745 | . . . . . . 7 ⊢ ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝑐)) | |
27 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑐 = 𝐴 → (𝐹‘𝑐) = (𝐹‘𝐴)) | |
28 | 27 | eqeq2d 2749 | . . . . . . 7 ⊢ (𝑐 = 𝐴 → (𝑈 = (𝐹‘𝑐) ↔ 𝑈 = (𝐹‘𝐴))) |
29 | 26, 28 | syl5bb 282 | . . . . . 6 ⊢ (𝑐 = 𝐴 → ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝐴))) |
30 | 29 | rspcev 3552 | . . . . 5 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
31 | 25, 30 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
32 | 31 | adantlr 711 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
33 | ivthle2.9 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) | |
34 | 33 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ (𝐹‘𝐴)) |
35 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
36 | 35 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
37 | 14 | ralrimiva 3107 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
38 | 36, 37, 25 | rspcdva 3554 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
39 | 6, 38 | leloed 11048 | . . . . 5 ⊢ (𝜑 → (𝑈 ≤ (𝐹‘𝐴) ↔ (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴)))) |
40 | 34, 39 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
42 | 20, 32, 41 | mpjaodan 955 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
43 | ubicc2 13126 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
44 | 21, 22, 23, 43 | syl3anc 1369 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
45 | fveqeq2 6765 | . . . 4 ⊢ (𝑐 = 𝐵 → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘𝐵) = 𝑈)) | |
46 | 45 | rspcev 3552 | . . 3 ⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
47 | 44, 46 | sylan 579 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
48 | 33 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ≤ 𝑈) |
49 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
50 | 49 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐵) ∈ ℝ)) |
51 | 50, 37, 44 | rspcdva 3554 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
52 | 51, 6 | leloed 11048 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ↔ ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈))) |
53 | 48, 52 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈)) |
54 | 42, 47, 53 | mpjaodan 955 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 (,)cioo 13008 [,]cicc 13011 –cn→ccncf 23945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 |
This theorem is referenced by: ivthicc 24527 recosf1o 25596 |
Copyright terms: Public domain | W3C validator |