| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ivthle2 | Structured version Visualization version GIF version | ||
| Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivthle2.9 | ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) |
| Ref | Expression |
|---|---|
| ivthle2 | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc 13337 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 2 | ivth.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 ∈ ℝ) |
| 4 | ivth.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐵 ∈ ℝ) |
| 6 | ivth.3 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝑈 ∈ ℝ) |
| 8 | ivth.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 < 𝐵) |
| 10 | ivth.5 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → (𝐴[,]𝐵) ⊆ 𝐷) |
| 12 | ivth.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
| 14 | ivth.8 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
| 15 | 14 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) | |
| 17 | 3, 5, 7, 9, 11, 13, 15, 16 | ivth2 25386 | . . . . 5 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
| 18 | ssrexv 4000 | . . . . 5 ⊢ ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈)) | |
| 19 | 1, 17, 18 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 20 | 19 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 < (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 21 | 2 | rexrd 11171 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 22 | 4 | rexrd 11171 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 23 | 2, 4, 8 | ltled 11270 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 24 | lbicc2 13368 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 25 | 21, 22, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 26 | eqcom 2740 | . . . . . . 7 ⊢ ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝑐)) | |
| 27 | fveq2 6830 | . . . . . . . 8 ⊢ (𝑐 = 𝐴 → (𝐹‘𝑐) = (𝐹‘𝐴)) | |
| 28 | 27 | eqeq2d 2744 | . . . . . . 7 ⊢ (𝑐 = 𝐴 → (𝑈 = (𝐹‘𝑐) ↔ 𝑈 = (𝐹‘𝐴))) |
| 29 | 26, 28 | bitrid 283 | . . . . . 6 ⊢ (𝑐 = 𝐴 → ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝐴))) |
| 30 | 29 | rspcev 3573 | . . . . 5 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 31 | 25, 30 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 32 | 31 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 33 | ivthle2.9 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) | |
| 34 | 33 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ (𝐹‘𝐴)) |
| 35 | fveq2 6830 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 36 | 35 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
| 37 | 14 | ralrimiva 3125 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
| 38 | 36, 37, 25 | rspcdva 3574 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 39 | 6, 38 | leloed 11265 | . . . . 5 ⊢ (𝜑 → (𝑈 ≤ (𝐹‘𝐴) ↔ (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴)))) |
| 40 | 34, 39 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
| 41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
| 42 | 20, 32, 41 | mpjaodan 960 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 43 | ubicc2 13369 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
| 44 | 21, 22, 23, 43 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 45 | fveqeq2 6839 | . . . 4 ⊢ (𝑐 = 𝐵 → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘𝐵) = 𝑈)) | |
| 46 | 45 | rspcev 3573 | . . 3 ⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 47 | 44, 46 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| 48 | 33 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ≤ 𝑈) |
| 49 | fveq2 6830 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
| 50 | 49 | eleq1d 2818 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐵) ∈ ℝ)) |
| 51 | 50, 37, 44 | rspcdva 3574 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
| 52 | 51, 6 | leloed 11265 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ↔ ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈))) |
| 53 | 48, 52 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈)) |
| 54 | 42, 47, 53 | mpjaodan 960 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 (,)cioo 13249 [,]cicc 13252 –cn→ccncf 24799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-ioo 13253 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cn 23145 df-cnp 23146 df-tx 23480 df-hmeo 23673 df-xms 24238 df-ms 24239 df-tms 24240 df-cncf 24801 |
| This theorem is referenced by: ivthicc 25389 recosf1o 26474 |
| Copyright terms: Public domain | W3C validator |