![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ivthle2 | Structured version Visualization version GIF version |
Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivthle2.9 | ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) |
Ref | Expression |
---|---|
ivthle2 | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 13414 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
2 | ivth.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 ∈ ℝ) |
4 | ivth.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐵 ∈ ℝ) |
6 | ivth.3 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
7 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝑈 ∈ ℝ) |
8 | ivth.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 < 𝐵) | |
9 | 8 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 < 𝐵) |
10 | ivth.5 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
11 | 10 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → (𝐴[,]𝐵) ⊆ 𝐷) |
12 | ivth.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
13 | 12 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
14 | ivth.8 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
15 | 14 | adantlr 711 | . . . . . 6 ⊢ (((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
16 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) | |
17 | 3, 5, 7, 9, 11, 13, 15, 16 | ivth2 25204 | . . . . 5 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
18 | ssrexv 4050 | . . . . 5 ⊢ ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈)) | |
19 | 1, 17, 18 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
20 | 19 | anassrs 466 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 < (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
21 | 2 | rexrd 11268 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
22 | 4 | rexrd 11268 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
23 | 2, 4, 8 | ltled 11366 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
24 | lbicc2 13445 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
25 | 21, 22, 23, 24 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
26 | eqcom 2737 | . . . . . . 7 ⊢ ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝑐)) | |
27 | fveq2 6890 | . . . . . . . 8 ⊢ (𝑐 = 𝐴 → (𝐹‘𝑐) = (𝐹‘𝐴)) | |
28 | 27 | eqeq2d 2741 | . . . . . . 7 ⊢ (𝑐 = 𝐴 → (𝑈 = (𝐹‘𝑐) ↔ 𝑈 = (𝐹‘𝐴))) |
29 | 26, 28 | bitrid 282 | . . . . . 6 ⊢ (𝑐 = 𝐴 → ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝐴))) |
30 | 29 | rspcev 3611 | . . . . 5 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
31 | 25, 30 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
32 | 31 | adantlr 711 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
33 | ivthle2.9 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) | |
34 | 33 | simprd 494 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ (𝐹‘𝐴)) |
35 | fveq2 6890 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
36 | 35 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
37 | 14 | ralrimiva 3144 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
38 | 36, 37, 25 | rspcdva 3612 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
39 | 6, 38 | leloed 11361 | . . . . 5 ⊢ (𝜑 → (𝑈 ≤ (𝐹‘𝐴) ↔ (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴)))) |
40 | 34, 39 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
41 | 40 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
42 | 20, 32, 41 | mpjaodan 955 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
43 | ubicc2 13446 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
44 | 21, 22, 23, 43 | syl3anc 1369 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
45 | fveqeq2 6899 | . . . 4 ⊢ (𝑐 = 𝐵 → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘𝐵) = 𝑈)) | |
46 | 45 | rspcev 3611 | . . 3 ⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
47 | 44, 46 | sylan 578 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
48 | 33 | simpld 493 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ≤ 𝑈) |
49 | fveq2 6890 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
50 | 49 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐵) ∈ ℝ)) |
51 | 50, 37, 44 | rspcdva 3612 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
52 | 51, 6 | leloed 11361 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ↔ ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈))) |
53 | 48, 52 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈)) |
54 | 42, 47, 53 | mpjaodan 955 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 843 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 ⊆ wss 3947 class class class wbr 5147 ‘cfv 6542 (class class class)co 7411 ℂcc 11110 ℝcr 11111 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 (,)cioo 13328 [,]cicc 13331 –cn→ccncf 24616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-icc 13335 df-fz 13489 df-fzo 13632 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cn 22951 df-cnp 22952 df-tx 23286 df-hmeo 23479 df-xms 24046 df-ms 24047 df-tms 24048 df-cncf 24618 |
This theorem is referenced by: ivthicc 25207 recosf1o 26280 |
Copyright terms: Public domain | W3C validator |