MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle2 Structured version   Visualization version   GIF version

Theorem ivthle2 24354
Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthle2.9 (𝜑 → ((𝐹𝐵) ≤ 𝑈𝑈 ≤ (𝐹𝐴)))
Assertion
Ref Expression
ivthle2 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivthle2
StepHypRef Expression
1 ioossicc 13021 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2 ivth.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
32adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐴 ∈ ℝ)
4 ivth.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐵 ∈ ℝ)
6 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
76adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝑈 ∈ ℝ)
8 ivth.4 . . . . . . 7 (𝜑𝐴 < 𝐵)
98adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐴 < 𝐵)
10 ivth.5 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
1110adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → (𝐴[,]𝐵) ⊆ 𝐷)
12 ivth.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1312adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 715 . . . . . 6 (((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 simpr 488 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
173, 5, 7, 9, 11, 13, 15, 16ivth2 24352 . . . . 5 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
18 ssrexv 3968 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈))
191, 17, 18mpsyl 68 . . . 4 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
2019anassrs 471 . . 3 (((𝜑 ∧ (𝐹𝐵) < 𝑈) ∧ 𝑈 < (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
212rexrd 10883 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
224rexrd 10883 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
232, 4, 8ltled 10980 . . . . . 6 (𝜑𝐴𝐵)
24 lbicc2 13052 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2521, 22, 23, 24syl3anc 1373 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
26 eqcom 2744 . . . . . . 7 ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝑐))
27 fveq2 6717 . . . . . . . 8 (𝑐 = 𝐴 → (𝐹𝑐) = (𝐹𝐴))
2827eqeq2d 2748 . . . . . . 7 (𝑐 = 𝐴 → (𝑈 = (𝐹𝑐) ↔ 𝑈 = (𝐹𝐴)))
2926, 28syl5bb 286 . . . . . 6 (𝑐 = 𝐴 → ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝐴)))
3029rspcev 3537 . . . . 5 ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3125, 30sylan 583 . . . 4 ((𝜑𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3231adantlr 715 . . 3 (((𝜑 ∧ (𝐹𝐵) < 𝑈) ∧ 𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
33 ivthle2.9 . . . . . 6 (𝜑 → ((𝐹𝐵) ≤ 𝑈𝑈 ≤ (𝐹𝐴)))
3433simprd 499 . . . . 5 (𝜑𝑈 ≤ (𝐹𝐴))
35 fveq2 6717 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
3635eleq1d 2822 . . . . . . 7 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
3714ralrimiva 3105 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3836, 37, 25rspcdva 3539 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℝ)
396, 38leloed 10975 . . . . 5 (𝜑 → (𝑈 ≤ (𝐹𝐴) ↔ (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴))))
4034, 39mpbid 235 . . . 4 (𝜑 → (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴)))
4140adantr 484 . . 3 ((𝜑 ∧ (𝐹𝐵) < 𝑈) → (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴)))
4220, 32, 41mpjaodan 959 . 2 ((𝜑 ∧ (𝐹𝐵) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
43 ubicc2 13053 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4421, 22, 23, 43syl3anc 1373 . . 3 (𝜑𝐵 ∈ (𝐴[,]𝐵))
45 fveqeq2 6726 . . . 4 (𝑐 = 𝐵 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝐵) = 𝑈))
4645rspcev 3537 . . 3 ((𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4744, 46sylan 583 . 2 ((𝜑 ∧ (𝐹𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4833simpld 498 . . 3 (𝜑 → (𝐹𝐵) ≤ 𝑈)
49 fveq2 6717 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
5049eleq1d 2822 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
5150, 37, 44rspcdva 3539 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ)
5251, 6leloed 10975 . . 3 (𝜑 → ((𝐹𝐵) ≤ 𝑈 ↔ ((𝐹𝐵) < 𝑈 ∨ (𝐹𝐵) = 𝑈)))
5348, 52mpbid 235 . 2 (𝜑 → ((𝐹𝐵) < 𝑈 ∨ (𝐹𝐵) = 𝑈))
5442, 47, 53mpjaodan 959 1 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wrex 3062  wss 3866   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  *cxr 10866   < clt 10867  cle 10868  (,)cioo 12935  [,]cicc 12938  cnccncf 23773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cn 22124  df-cnp 22125  df-tx 22459  df-hmeo 22652  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775
This theorem is referenced by:  ivthicc  24355  recosf1o  25424
  Copyright terms: Public domain W3C validator