![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ivthle2 | Structured version Visualization version GIF version |
Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivthle2.9 | ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) |
Ref | Expression |
---|---|
ivthle2 | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 13469 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
2 | ivth.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 ∈ ℝ) |
4 | ivth.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐵 ∈ ℝ) |
6 | ivth.3 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝑈 ∈ ℝ) |
8 | ivth.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 < 𝐵) | |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐴 < 𝐵) |
10 | ivth.5 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → (𝐴[,]𝐵) ⊆ 𝐷) |
12 | ivth.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
14 | ivth.8 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
15 | 14 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) | |
17 | 3, 5, 7, 9, 11, 13, 15, 16 | ivth2 25503 | . . . . 5 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
18 | ssrexv 4064 | . . . . 5 ⊢ ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈)) | |
19 | 1, 17, 18 | mpsyl 68 | . . . 4 ⊢ ((𝜑 ∧ ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
20 | 19 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 < (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
21 | 2 | rexrd 11308 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
22 | 4 | rexrd 11308 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
23 | 2, 4, 8 | ltled 11406 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
24 | lbicc2 13500 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
25 | 21, 22, 23, 24 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
26 | eqcom 2741 | . . . . . . 7 ⊢ ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝑐)) | |
27 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑐 = 𝐴 → (𝐹‘𝑐) = (𝐹‘𝐴)) | |
28 | 27 | eqeq2d 2745 | . . . . . . 7 ⊢ (𝑐 = 𝐴 → (𝑈 = (𝐹‘𝑐) ↔ 𝑈 = (𝐹‘𝐴))) |
29 | 26, 28 | bitrid 283 | . . . . . 6 ⊢ (𝑐 = 𝐴 → ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝐴))) |
30 | 29 | rspcev 3621 | . . . . 5 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
31 | 25, 30 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
32 | 31 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ (𝐹‘𝐵) < 𝑈) ∧ 𝑈 = (𝐹‘𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
33 | ivthle2.9 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) | |
34 | 33 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ (𝐹‘𝐴)) |
35 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
36 | 35 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
37 | 14 | ralrimiva 3143 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
38 | 36, 37, 25 | rspcdva 3622 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
39 | 6, 38 | leloed 11401 | . . . . 5 ⊢ (𝜑 → (𝑈 ≤ (𝐹‘𝐴) ↔ (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴)))) |
40 | 34, 39 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → (𝑈 < (𝐹‘𝐴) ∨ 𝑈 = (𝐹‘𝐴))) |
42 | 20, 32, 41 | mpjaodan 960 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
43 | ubicc2 13501 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
44 | 21, 22, 23, 43 | syl3anc 1370 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
45 | fveqeq2 6915 | . . . 4 ⊢ (𝑐 = 𝐵 → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘𝐵) = 𝑈)) | |
46 | 45 | rspcev 3621 | . . 3 ⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
47 | 44, 46 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝐹‘𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
48 | 33 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ≤ 𝑈) |
49 | fveq2 6906 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
50 | 49 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐵) ∈ ℝ)) |
51 | 50, 37, 44 | rspcdva 3622 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
52 | 51, 6 | leloed 11401 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ↔ ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈))) |
53 | 48, 52 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∨ (𝐹‘𝐵) = 𝑈)) |
54 | 42, 47, 53 | mpjaodan 960 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 (,)cioo 13383 [,]cicc 13386 –cn→ccncf 24915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-icc 13390 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cn 23250 df-cnp 23251 df-tx 23585 df-hmeo 23778 df-xms 24345 df-ms 24346 df-tms 24347 df-cncf 24917 |
This theorem is referenced by: ivthicc 25506 recosf1o 26591 |
Copyright terms: Public domain | W3C validator |