MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle2 Structured version   Visualization version   GIF version

Theorem ivthle2 25358
Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthle2.9 (𝜑 → ((𝐹𝐵) ≤ 𝑈𝑈 ≤ (𝐹𝐴)))
Assertion
Ref Expression
ivthle2 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivthle2
StepHypRef Expression
1 ioossicc 13394 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2 ivth.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐴 ∈ ℝ)
4 ivth.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐵 ∈ ℝ)
6 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
76adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝑈 ∈ ℝ)
8 ivth.4 . . . . . . 7 (𝜑𝐴 < 𝐵)
98adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐴 < 𝐵)
10 ivth.5 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
1110adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → (𝐴[,]𝐵) ⊆ 𝐷)
12 ivth.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1312adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → 𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 715 . . . . . 6 (((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 simpr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
173, 5, 7, 9, 11, 13, 15, 16ivth2 25356 . . . . 5 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
18 ssrexv 4016 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈))
191, 17, 18mpsyl 68 . . . 4 ((𝜑 ∧ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
2019anassrs 467 . . 3 (((𝜑 ∧ (𝐹𝐵) < 𝑈) ∧ 𝑈 < (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
212rexrd 11224 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
224rexrd 11224 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
232, 4, 8ltled 11322 . . . . . 6 (𝜑𝐴𝐵)
24 lbicc2 13425 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2521, 22, 23, 24syl3anc 1373 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
26 eqcom 2736 . . . . . . 7 ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝑐))
27 fveq2 6858 . . . . . . . 8 (𝑐 = 𝐴 → (𝐹𝑐) = (𝐹𝐴))
2827eqeq2d 2740 . . . . . . 7 (𝑐 = 𝐴 → (𝑈 = (𝐹𝑐) ↔ 𝑈 = (𝐹𝐴)))
2926, 28bitrid 283 . . . . . 6 (𝑐 = 𝐴 → ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝐴)))
3029rspcev 3588 . . . . 5 ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3125, 30sylan 580 . . . 4 ((𝜑𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3231adantlr 715 . . 3 (((𝜑 ∧ (𝐹𝐵) < 𝑈) ∧ 𝑈 = (𝐹𝐴)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
33 ivthle2.9 . . . . . 6 (𝜑 → ((𝐹𝐵) ≤ 𝑈𝑈 ≤ (𝐹𝐴)))
3433simprd 495 . . . . 5 (𝜑𝑈 ≤ (𝐹𝐴))
35 fveq2 6858 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
3635eleq1d 2813 . . . . . . 7 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
3714ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3836, 37, 25rspcdva 3589 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℝ)
396, 38leloed 11317 . . . . 5 (𝜑 → (𝑈 ≤ (𝐹𝐴) ↔ (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴))))
4034, 39mpbid 232 . . . 4 (𝜑 → (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴)))
4140adantr 480 . . 3 ((𝜑 ∧ (𝐹𝐵) < 𝑈) → (𝑈 < (𝐹𝐴) ∨ 𝑈 = (𝐹𝐴)))
4220, 32, 41mpjaodan 960 . 2 ((𝜑 ∧ (𝐹𝐵) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
43 ubicc2 13426 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4421, 22, 23, 43syl3anc 1373 . . 3 (𝜑𝐵 ∈ (𝐴[,]𝐵))
45 fveqeq2 6867 . . . 4 (𝑐 = 𝐵 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝐵) = 𝑈))
4645rspcev 3588 . . 3 ((𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4744, 46sylan 580 . 2 ((𝜑 ∧ (𝐹𝐵) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4833simpld 494 . . 3 (𝜑 → (𝐹𝐵) ≤ 𝑈)
49 fveq2 6858 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
5049eleq1d 2813 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
5150, 37, 44rspcdva 3589 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ)
5251, 6leloed 11317 . . 3 (𝜑 → ((𝐹𝐵) ≤ 𝑈 ↔ ((𝐹𝐵) < 𝑈 ∨ (𝐹𝐵) = 𝑈)))
5348, 52mpbid 232 . 2 (𝜑 → ((𝐹𝐵) < 𝑈 ∨ (𝐹𝐵) = 𝑈))
5442, 47, 53mpjaodan 960 1 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  *cxr 11207   < clt 11208  cle 11209  (,)cioo 13306  [,]cicc 13309  cnccncf 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771
This theorem is referenced by:  ivthicc  25359  recosf1o  26444
  Copyright terms: Public domain W3C validator