MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle Structured version   Visualization version   GIF version

Theorem ivthle 25510
Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthle.9 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
Assertion
Ref Expression
ivthle (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivthle
StepHypRef Expression
1 ioossicc 13493 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2 ivth.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 ∈ ℝ)
4 ivth.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐵 ∈ ℝ)
6 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
76adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝑈 ∈ ℝ)
8 ivth.4 . . . . . . 7 (𝜑𝐴 < 𝐵)
98adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 < 𝐵)
10 ivth.5 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
1110adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → (𝐴[,]𝐵) ⊆ 𝐷)
12 ivth.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1312adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 714 . . . . . 6 (((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 simpr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
173, 5, 7, 9, 11, 13, 15, 16ivth 25508 . . . . 5 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
18 ssrexv 4078 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈))
191, 17, 18mpsyl 68 . . . 4 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
2019anassrs 467 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 < (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
212rexrd 11340 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
224rexrd 11340 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
232, 4, 8ltled 11438 . . . . . 6 (𝜑𝐴𝐵)
24 ubicc2 13525 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2521, 22, 23, 24syl3anc 1371 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
26 eqcom 2747 . . . . . . 7 ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝑐))
27 fveq2 6920 . . . . . . . 8 (𝑐 = 𝐵 → (𝐹𝑐) = (𝐹𝐵))
2827eqeq2d 2751 . . . . . . 7 (𝑐 = 𝐵 → (𝑈 = (𝐹𝑐) ↔ 𝑈 = (𝐹𝐵)))
2926, 28bitrid 283 . . . . . 6 (𝑐 = 𝐵 → ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝐵)))
3029rspcev 3635 . . . . 5 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3125, 30sylan 579 . . . 4 ((𝜑𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3231adantlr 714 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
33 ivthle.9 . . . . . 6 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
3433simprd 495 . . . . 5 (𝜑𝑈 ≤ (𝐹𝐵))
35 fveq2 6920 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3635eleq1d 2829 . . . . . . 7 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
3714ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3836, 37, 25rspcdva 3636 . . . . . 6 (𝜑 → (𝐹𝐵) ∈ ℝ)
396, 38leloed 11433 . . . . 5 (𝜑 → (𝑈 ≤ (𝐹𝐵) ↔ (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵))))
4034, 39mpbid 232 . . . 4 (𝜑 → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4140adantr 480 . . 3 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4220, 32, 41mpjaodan 959 . 2 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
43 lbicc2 13524 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4421, 22, 23, 43syl3anc 1371 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
45 fveqeq2 6929 . . . 4 (𝑐 = 𝐴 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝐴) = 𝑈))
4645rspcev 3635 . . 3 ((𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4744, 46sylan 579 . 2 ((𝜑 ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4833simpld 494 . . 3 (𝜑 → (𝐹𝐴) ≤ 𝑈)
49 fveq2 6920 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
5049eleq1d 2829 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
5150, 37, 44rspcdva 3636 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
5251, 6leloed 11433 . . 3 (𝜑 → ((𝐹𝐴) ≤ 𝑈 ↔ ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈)))
5348, 52mpbid 232 . 2 (𝜑 → ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈))
5442, 47, 53mpjaodan 959 1 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wrex 3076  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  [,]cicc 13410  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ioo 13411  df-icc 13414  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-cncf 24923
This theorem is referenced by:  ivthicc  25512  volivth  25661
  Copyright terms: Public domain W3C validator