MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle Structured version   Visualization version   GIF version

Theorem ivthle 24060
Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthle.9 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
Assertion
Ref Expression
ivthle (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivthle
StepHypRef Expression
1 ioossicc 12811 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2 ivth.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
32adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 ∈ ℝ)
4 ivth.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐵 ∈ ℝ)
6 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
76adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝑈 ∈ ℝ)
8 ivth.4 . . . . . . 7 (𝜑𝐴 < 𝐵)
98adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 < 𝐵)
10 ivth.5 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
1110adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → (𝐴[,]𝐵) ⊆ 𝐷)
12 ivth.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1312adantr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 714 . . . . . 6 (((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 simpr 488 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
173, 5, 7, 9, 11, 13, 15, 16ivth 24058 . . . . 5 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
18 ssrexv 3982 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈))
191, 17, 18mpsyl 68 . . . 4 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
2019anassrs 471 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 < (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
212rexrd 10680 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
224rexrd 10680 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
232, 4, 8ltled 10777 . . . . . 6 (𝜑𝐴𝐵)
24 ubicc2 12843 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2521, 22, 23, 24syl3anc 1368 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
26 eqcom 2805 . . . . . . 7 ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝑐))
27 fveq2 6645 . . . . . . . 8 (𝑐 = 𝐵 → (𝐹𝑐) = (𝐹𝐵))
2827eqeq2d 2809 . . . . . . 7 (𝑐 = 𝐵 → (𝑈 = (𝐹𝑐) ↔ 𝑈 = (𝐹𝐵)))
2926, 28syl5bb 286 . . . . . 6 (𝑐 = 𝐵 → ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝐵)))
3029rspcev 3571 . . . . 5 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3125, 30sylan 583 . . . 4 ((𝜑𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3231adantlr 714 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
33 ivthle.9 . . . . . 6 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
3433simprd 499 . . . . 5 (𝜑𝑈 ≤ (𝐹𝐵))
35 fveq2 6645 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3635eleq1d 2874 . . . . . . 7 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
3714ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3836, 37, 25rspcdva 3573 . . . . . 6 (𝜑 → (𝐹𝐵) ∈ ℝ)
396, 38leloed 10772 . . . . 5 (𝜑 → (𝑈 ≤ (𝐹𝐵) ↔ (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵))))
4034, 39mpbid 235 . . . 4 (𝜑 → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4140adantr 484 . . 3 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4220, 32, 41mpjaodan 956 . 2 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
43 lbicc2 12842 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4421, 22, 23, 43syl3anc 1368 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
45 fveqeq2 6654 . . . 4 (𝑐 = 𝐴 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝐴) = 𝑈))
4645rspcev 3571 . . 3 ((𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4744, 46sylan 583 . 2 ((𝜑 ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4833simpld 498 . . 3 (𝜑 → (𝐹𝐴) ≤ 𝑈)
49 fveq2 6645 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
5049eleq1d 2874 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
5150, 37, 44rspcdva 3573 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
5251, 6leloed 10772 . . 3 (𝜑 → ((𝐹𝐴) ≤ 𝑈 ↔ ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈)))
5348, 52mpbid 235 . 2 (𝜑 → ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈))
5442, 47, 53mpjaodan 956 1 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wrex 3107  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  [,]cicc 12729  cnccncf 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ioo 12730  df-icc 12733  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-cncf 23483
This theorem is referenced by:  ivthicc  24062  volivth  24211
  Copyright terms: Public domain W3C validator