Proof of Theorem ivthle
Step | Hyp | Ref
| Expression |
1 | | ioossicc 13165 |
. . . . 5
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
2 | | ivth.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → 𝐴 ∈ ℝ) |
4 | | ivth.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → 𝐵 ∈ ℝ) |
6 | | ivth.3 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ ℝ) |
7 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → 𝑈 ∈ ℝ) |
8 | | ivth.4 |
. . . . . . 7
⊢ (𝜑 → 𝐴 < 𝐵) |
9 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → 𝐴 < 𝐵) |
10 | | ivth.5 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
11 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → (𝐴[,]𝐵) ⊆ 𝐷) |
12 | | ivth.7 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
13 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
14 | | ivth.8 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
15 | 14 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
16 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
17 | 3, 5, 7, 9, 11, 13, 15, 16 | ivth 24618 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
18 | | ssrexv 3988 |
. . . . 5
⊢ ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈)) |
19 | 1, 17, 18 | mpsyl 68 |
. . . 4
⊢ ((𝜑 ∧ ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
20 | 19 | anassrs 468 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝐴) < 𝑈) ∧ 𝑈 < (𝐹‘𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
21 | 2 | rexrd 11025 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
22 | 4 | rexrd 11025 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
23 | 2, 4, 8 | ltled 11123 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
24 | | ubicc2 13197 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
25 | 21, 22, 23, 24 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
26 | | eqcom 2745 |
. . . . . . 7
⊢ ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝑐)) |
27 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑐 = 𝐵 → (𝐹‘𝑐) = (𝐹‘𝐵)) |
28 | 27 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑐 = 𝐵 → (𝑈 = (𝐹‘𝑐) ↔ 𝑈 = (𝐹‘𝐵))) |
29 | 26, 28 | bitrid 282 |
. . . . . 6
⊢ (𝑐 = 𝐵 → ((𝐹‘𝑐) = 𝑈 ↔ 𝑈 = (𝐹‘𝐵))) |
30 | 29 | rspcev 3561 |
. . . . 5
⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹‘𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
31 | 25, 30 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑈 = (𝐹‘𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
32 | 31 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝐴) < 𝑈) ∧ 𝑈 = (𝐹‘𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
33 | | ivthle.9 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐴) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐵))) |
34 | 33 | simprd 496 |
. . . . 5
⊢ (𝜑 → 𝑈 ≤ (𝐹‘𝐵)) |
35 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
36 | 35 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐵) ∈ ℝ)) |
37 | 14 | ralrimiva 3103 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
38 | 36, 37, 25 | rspcdva 3562 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
39 | 6, 38 | leloed 11118 |
. . . . 5
⊢ (𝜑 → (𝑈 ≤ (𝐹‘𝐵) ↔ (𝑈 < (𝐹‘𝐵) ∨ 𝑈 = (𝐹‘𝐵)))) |
40 | 34, 39 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝑈 < (𝐹‘𝐵) ∨ 𝑈 = (𝐹‘𝐵))) |
41 | 40 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝐴) < 𝑈) → (𝑈 < (𝐹‘𝐵) ∨ 𝑈 = (𝐹‘𝐵))) |
42 | 20, 32, 41 | mpjaodan 956 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝐴) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
43 | | lbicc2 13196 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
44 | 21, 22, 23, 43 | syl3anc 1370 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
45 | | fveqeq2 6783 |
. . . 4
⊢ (𝑐 = 𝐴 → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘𝐴) = 𝑈)) |
46 | 45 | rspcev 3561 |
. . 3
⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
47 | 44, 46 | sylan 580 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |
48 | 33 | simpld 495 |
. . 3
⊢ (𝜑 → (𝐹‘𝐴) ≤ 𝑈) |
49 | | fveq2 6774 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
50 | 49 | eleq1d 2823 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
51 | 50, 37, 44 | rspcdva 3562 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
52 | 51, 6 | leloed 11118 |
. . 3
⊢ (𝜑 → ((𝐹‘𝐴) ≤ 𝑈 ↔ ((𝐹‘𝐴) < 𝑈 ∨ (𝐹‘𝐴) = 𝑈))) |
53 | 48, 52 | mpbid 231 |
. 2
⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∨ (𝐹‘𝐴) = 𝑈)) |
54 | 42, 47, 53 | mpjaodan 956 |
1
⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) |