MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle Structured version   Visualization version   GIF version

Theorem ivthle 25405
Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthle.9 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
Assertion
Ref Expression
ivthle (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivthle
StepHypRef Expression
1 ioossicc 13450 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2 ivth.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
32adantr 479 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 ∈ ℝ)
4 ivth.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54adantr 479 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐵 ∈ ℝ)
6 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
76adantr 479 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝑈 ∈ ℝ)
8 ivth.4 . . . . . . 7 (𝜑𝐴 < 𝐵)
98adantr 479 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 < 𝐵)
10 ivth.5 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
1110adantr 479 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → (𝐴[,]𝐵) ⊆ 𝐷)
12 ivth.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1312adantr 479 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 713 . . . . . 6 (((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 simpr 483 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
173, 5, 7, 9, 11, 13, 15, 16ivth 25403 . . . . 5 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
18 ssrexv 4051 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈))
191, 17, 18mpsyl 68 . . . 4 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
2019anassrs 466 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 < (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
212rexrd 11302 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
224rexrd 11302 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
232, 4, 8ltled 11400 . . . . . 6 (𝜑𝐴𝐵)
24 ubicc2 13482 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2521, 22, 23, 24syl3anc 1368 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
26 eqcom 2735 . . . . . . 7 ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝑐))
27 fveq2 6902 . . . . . . . 8 (𝑐 = 𝐵 → (𝐹𝑐) = (𝐹𝐵))
2827eqeq2d 2739 . . . . . . 7 (𝑐 = 𝐵 → (𝑈 = (𝐹𝑐) ↔ 𝑈 = (𝐹𝐵)))
2926, 28bitrid 282 . . . . . 6 (𝑐 = 𝐵 → ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝐵)))
3029rspcev 3611 . . . . 5 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3125, 30sylan 578 . . . 4 ((𝜑𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3231adantlr 713 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
33 ivthle.9 . . . . . 6 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
3433simprd 494 . . . . 5 (𝜑𝑈 ≤ (𝐹𝐵))
35 fveq2 6902 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3635eleq1d 2814 . . . . . . 7 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
3714ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3836, 37, 25rspcdva 3612 . . . . . 6 (𝜑 → (𝐹𝐵) ∈ ℝ)
396, 38leloed 11395 . . . . 5 (𝜑 → (𝑈 ≤ (𝐹𝐵) ↔ (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵))))
4034, 39mpbid 231 . . . 4 (𝜑 → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4140adantr 479 . . 3 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4220, 32, 41mpjaodan 956 . 2 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
43 lbicc2 13481 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4421, 22, 23, 43syl3anc 1368 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
45 fveqeq2 6911 . . . 4 (𝑐 = 𝐴 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝐴) = 𝑈))
4645rspcev 3611 . . 3 ((𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4744, 46sylan 578 . 2 ((𝜑 ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4833simpld 493 . . 3 (𝜑 → (𝐹𝐴) ≤ 𝑈)
49 fveq2 6902 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
5049eleq1d 2814 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
5150, 37, 44rspcdva 3612 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
5251, 6leloed 11395 . . 3 (𝜑 → ((𝐹𝐴) ≤ 𝑈 ↔ ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈)))
5348, 52mpbid 231 . 2 (𝜑 → ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈))
5442, 47, 53mpjaodan 956 1 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wrex 3067  wss 3949   class class class wbr 5152  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  *cxr 11285   < clt 11286  cle 11287  (,)cioo 13364  [,]cicc 13367  cnccncf 24816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-ioo 13368  df-icc 13371  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-cncf 24818
This theorem is referenced by:  ivthicc  25407  volivth  25556
  Copyright terms: Public domain W3C validator