MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle Structured version   Visualization version   GIF version

Theorem ivthle 25409
Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthle.9 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
Assertion
Ref Expression
ivthle (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivthle
StepHypRef Expression
1 ioossicc 13450 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2 ivth.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 ∈ ℝ)
4 ivth.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐵 ∈ ℝ)
6 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
76adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝑈 ∈ ℝ)
8 ivth.4 . . . . . . 7 (𝜑𝐴 < 𝐵)
98adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 < 𝐵)
10 ivth.5 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
1110adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → (𝐴[,]𝐵) ⊆ 𝐷)
12 ivth.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1312adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 715 . . . . . 6 (((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 simpr 484 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
173, 5, 7, 9, 11, 13, 15, 16ivth 25407 . . . . 5 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
18 ssrexv 4028 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈))
191, 17, 18mpsyl 68 . . . 4 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
2019anassrs 467 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 < (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
212rexrd 11285 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
224rexrd 11285 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
232, 4, 8ltled 11383 . . . . . 6 (𝜑𝐴𝐵)
24 ubicc2 13482 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2521, 22, 23, 24syl3anc 1373 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
26 eqcom 2742 . . . . . . 7 ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝑐))
27 fveq2 6876 . . . . . . . 8 (𝑐 = 𝐵 → (𝐹𝑐) = (𝐹𝐵))
2827eqeq2d 2746 . . . . . . 7 (𝑐 = 𝐵 → (𝑈 = (𝐹𝑐) ↔ 𝑈 = (𝐹𝐵)))
2926, 28bitrid 283 . . . . . 6 (𝑐 = 𝐵 → ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝐵)))
3029rspcev 3601 . . . . 5 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3125, 30sylan 580 . . . 4 ((𝜑𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3231adantlr 715 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
33 ivthle.9 . . . . . 6 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
3433simprd 495 . . . . 5 (𝜑𝑈 ≤ (𝐹𝐵))
35 fveq2 6876 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3635eleq1d 2819 . . . . . . 7 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
3714ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3836, 37, 25rspcdva 3602 . . . . . 6 (𝜑 → (𝐹𝐵) ∈ ℝ)
396, 38leloed 11378 . . . . 5 (𝜑 → (𝑈 ≤ (𝐹𝐵) ↔ (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵))))
4034, 39mpbid 232 . . . 4 (𝜑 → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4140adantr 480 . . 3 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4220, 32, 41mpjaodan 960 . 2 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
43 lbicc2 13481 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4421, 22, 23, 43syl3anc 1373 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
45 fveqeq2 6885 . . . 4 (𝑐 = 𝐴 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝐴) = 𝑈))
4645rspcev 3601 . . 3 ((𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4744, 46sylan 580 . 2 ((𝜑 ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4833simpld 494 . . 3 (𝜑 → (𝐹𝐴) ≤ 𝑈)
49 fveq2 6876 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
5049eleq1d 2819 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
5150, 37, 44rspcdva 3602 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
5251, 6leloed 11378 . . 3 (𝜑 → ((𝐹𝐴) ≤ 𝑈 ↔ ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈)))
5348, 52mpbid 232 . 2 (𝜑 → ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈))
5442, 47, 53mpjaodan 960 1 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wrex 3060  wss 3926   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  *cxr 11268   < clt 11269  cle 11270  (,)cioo 13362  [,]cicc 13365  cnccncf 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ioo 13366  df-icc 13369  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-cncf 24822
This theorem is referenced by:  ivthicc  25411  volivth  25560
  Copyright terms: Public domain W3C validator