MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthle Structured version   Visualization version   GIF version

Theorem ivthle 24057
Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthle.9 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
Assertion
Ref Expression
ivthle (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivthle
StepHypRef Expression
1 ioossicc 12823 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2 ivth.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
32adantr 483 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 ∈ ℝ)
4 ivth.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54adantr 483 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐵 ∈ ℝ)
6 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
76adantr 483 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝑈 ∈ ℝ)
8 ivth.4 . . . . . . 7 (𝜑𝐴 < 𝐵)
98adantr 483 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐴 < 𝐵)
10 ivth.5 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
1110adantr 483 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → (𝐴[,]𝐵) ⊆ 𝐷)
12 ivth.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1312adantr 483 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → 𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 713 . . . . . 6 (((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 simpr 487 . . . . . 6 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
173, 5, 7, 9, 11, 13, 15, 16ivth 24055 . . . . 5 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
18 ssrexv 4034 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈))
191, 17, 18mpsyl 68 . . . 4 ((𝜑 ∧ ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
2019anassrs 470 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 < (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
212rexrd 10691 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
224rexrd 10691 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
232, 4, 8ltled 10788 . . . . . 6 (𝜑𝐴𝐵)
24 ubicc2 12854 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2521, 22, 23, 24syl3anc 1367 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
26 eqcom 2828 . . . . . . 7 ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝑐))
27 fveq2 6670 . . . . . . . 8 (𝑐 = 𝐵 → (𝐹𝑐) = (𝐹𝐵))
2827eqeq2d 2832 . . . . . . 7 (𝑐 = 𝐵 → (𝑈 = (𝐹𝑐) ↔ 𝑈 = (𝐹𝐵)))
2926, 28syl5bb 285 . . . . . 6 (𝑐 = 𝐵 → ((𝐹𝑐) = 𝑈𝑈 = (𝐹𝐵)))
3029rspcev 3623 . . . . 5 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3125, 30sylan 582 . . . 4 ((𝜑𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
3231adantlr 713 . . 3 (((𝜑 ∧ (𝐹𝐴) < 𝑈) ∧ 𝑈 = (𝐹𝐵)) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
33 ivthle.9 . . . . . 6 (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))
3433simprd 498 . . . . 5 (𝜑𝑈 ≤ (𝐹𝐵))
35 fveq2 6670 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3635eleq1d 2897 . . . . . . 7 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
3714ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3836, 37, 25rspcdva 3625 . . . . . 6 (𝜑 → (𝐹𝐵) ∈ ℝ)
396, 38leloed 10783 . . . . 5 (𝜑 → (𝑈 ≤ (𝐹𝐵) ↔ (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵))))
4034, 39mpbid 234 . . . 4 (𝜑 → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4140adantr 483 . . 3 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → (𝑈 < (𝐹𝐵) ∨ 𝑈 = (𝐹𝐵)))
4220, 32, 41mpjaodan 955 . 2 ((𝜑 ∧ (𝐹𝐴) < 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
43 lbicc2 12853 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4421, 22, 23, 43syl3anc 1367 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
45 fveqeq2 6679 . . . 4 (𝑐 = 𝐴 → ((𝐹𝑐) = 𝑈 ↔ (𝐹𝐴) = 𝑈))
4645rspcev 3623 . . 3 ((𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4744, 46sylan 582 . 2 ((𝜑 ∧ (𝐹𝐴) = 𝑈) → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
4833simpld 497 . . 3 (𝜑 → (𝐹𝐴) ≤ 𝑈)
49 fveq2 6670 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
5049eleq1d 2897 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
5150, 37, 44rspcdva 3625 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
5251, 6leloed 10783 . . 3 (𝜑 → ((𝐹𝐴) ≤ 𝑈 ↔ ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈)))
5348, 52mpbid 234 . 2 (𝜑 → ((𝐹𝐴) < 𝑈 ∨ (𝐹𝐴) = 𝑈))
5442, 47, 53mpjaodan 955 1 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wrex 3139  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  *cxr 10674   < clt 10675  cle 10676  (,)cioo 12739  [,]cicc 12742  cnccncf 23484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ioo 12743  df-icc 12746  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-cncf 23486
This theorem is referenced by:  ivthicc  24059  volivth  24208
  Copyright terms: Public domain W3C validator