![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequz | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupequz.1 | ⊢ Ⅎ𝑘𝜑 |
limsupequz.2 | ⊢ Ⅎ𝑘𝐹 |
limsupequz.3 | ⊢ Ⅎ𝑘𝐺 |
limsupequz.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupequz.5 | ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) |
limsupequz.6 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
limsupequz.7 | ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) |
limsupequz.8 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
limsupequz.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
limsupequz | ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1873 | . 2 ⊢ Ⅎ𝑗𝜑 | |
2 | limsupequz.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | limsupequz.5 | . 2 ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) | |
4 | limsupequz.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
5 | limsupequz.7 | . 2 ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) | |
6 | limsupequz.8 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
7 | limsupequz.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
8 | nfv 1873 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (ℤ≥‘𝐾) | |
9 | 7, 8 | nfan 1862 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) |
10 | limsupequz.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
11 | nfcv 2933 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
12 | 10, 11 | nffv 6509 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
13 | limsupequz.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
14 | 13, 11 | nffv 6509 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
15 | 12, 14 | nfeq 2944 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
16 | 9, 15 | nfim 1859 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
17 | eleq1w 2849 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (ℤ≥‘𝐾) ↔ 𝑗 ∈ (ℤ≥‘𝐾))) | |
18 | 17 | anbi2d 619 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ↔ (𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)))) |
19 | fveq2 6499 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
20 | fveq2 6499 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
21 | 19, 20 | eqeq12d 2794 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
22 | 18, 21 | imbi12d 337 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
23 | limsupequz.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
24 | 16, 22, 23 | chvar 2326 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
25 | 1, 2, 3, 4, 5, 6, 24 | limsupequzlem 41432 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 Ⅎwnf 1746 ∈ wcel 2050 Ⅎwnfc 2917 Fn wfn 6183 ‘cfv 6188 ℤcz 11793 ℤ≥cuz 12058 lim supclsp 14688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-inf 8702 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-n0 11708 df-z 11794 df-uz 12059 df-q 12163 df-ico 12560 df-limsup 14689 |
This theorem is referenced by: limsupequzmptlem 41438 smflimsuplem2 42524 |
Copyright terms: Public domain | W3C validator |