Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequz | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupequz.1 | ⊢ Ⅎ𝑘𝜑 |
limsupequz.2 | ⊢ Ⅎ𝑘𝐹 |
limsupequz.3 | ⊢ Ⅎ𝑘𝐺 |
limsupequz.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupequz.5 | ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) |
limsupequz.6 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
limsupequz.7 | ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) |
limsupequz.8 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
limsupequz.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
limsupequz | ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . 2 ⊢ Ⅎ𝑗𝜑 | |
2 | limsupequz.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | limsupequz.5 | . 2 ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) | |
4 | limsupequz.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
5 | limsupequz.7 | . 2 ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) | |
6 | limsupequz.8 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
7 | limsupequz.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
8 | nfv 1916 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (ℤ≥‘𝐾) | |
9 | 7, 8 | nfan 1901 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) |
10 | limsupequz.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
11 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
12 | 10, 11 | nffv 6835 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
13 | limsupequz.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
14 | 13, 11 | nffv 6835 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
15 | 12, 14 | nfeq 2917 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
16 | 9, 15 | nfim 1898 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
17 | eleq1w 2819 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (ℤ≥‘𝐾) ↔ 𝑗 ∈ (ℤ≥‘𝐾))) | |
18 | 17 | anbi2d 629 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ↔ (𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)))) |
19 | fveq2 6825 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
20 | fveq2 6825 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
21 | 19, 20 | eqeq12d 2752 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
22 | 18, 21 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
23 | limsupequz.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
24 | 16, 22, 23 | chvarfv 2232 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
25 | 1, 2, 3, 4, 5, 6, 24 | limsupequzlem 43599 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 Fn wfn 6474 ‘cfv 6479 ℤcz 12420 ℤ≥cuz 12683 lim supclsp 15278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-q 12790 df-ico 13186 df-limsup 15279 |
This theorem is referenced by: limsupequzmptlem 43605 smflimsuplem2 44696 |
Copyright terms: Public domain | W3C validator |