| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequz | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupequz.1 | ⊢ Ⅎ𝑘𝜑 |
| limsupequz.2 | ⊢ Ⅎ𝑘𝐹 |
| limsupequz.3 | ⊢ Ⅎ𝑘𝐺 |
| limsupequz.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| limsupequz.5 | ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) |
| limsupequz.6 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| limsupequz.7 | ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) |
| limsupequz.8 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| limsupequz.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| Ref | Expression |
|---|---|
| limsupequz | ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑗𝜑 | |
| 2 | limsupequz.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | limsupequz.5 | . 2 ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) | |
| 4 | limsupequz.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 5 | limsupequz.7 | . 2 ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) | |
| 6 | limsupequz.8 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 7 | limsupequz.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 8 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (ℤ≥‘𝐾) | |
| 9 | 7, 8 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) |
| 10 | limsupequz.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 11 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 12 | 10, 11 | nffv 6868 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 13 | limsupequz.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
| 14 | 13, 11 | nffv 6868 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
| 15 | 12, 14 | nfeq 2905 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
| 16 | 9, 15 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
| 17 | eleq1w 2811 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (ℤ≥‘𝐾) ↔ 𝑗 ∈ (ℤ≥‘𝐾))) | |
| 18 | 17 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ↔ (𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)))) |
| 19 | fveq2 6858 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 20 | fveq2 6858 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
| 21 | 19, 20 | eqeq12d 2745 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
| 22 | 18, 21 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
| 23 | limsupequz.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 24 | 16, 22, 23 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
| 25 | 1, 2, 3, 4, 5, 6, 24 | limsupequzlem 45720 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 Fn wfn 6506 ‘cfv 6511 ℤcz 12529 ℤ≥cuz 12793 lim supclsp 15436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-ico 13312 df-limsup 15437 |
| This theorem is referenced by: limsupequzmptlem 45726 smflimsuplem2 46819 |
| Copyright terms: Public domain | W3C validator |