| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequz | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupequz.1 | ⊢ Ⅎ𝑘𝜑 |
| limsupequz.2 | ⊢ Ⅎ𝑘𝐹 |
| limsupequz.3 | ⊢ Ⅎ𝑘𝐺 |
| limsupequz.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| limsupequz.5 | ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) |
| limsupequz.6 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| limsupequz.7 | ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) |
| limsupequz.8 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| limsupequz.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| Ref | Expression |
|---|---|
| limsupequz | ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑗𝜑 | |
| 2 | limsupequz.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | limsupequz.5 | . 2 ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) | |
| 4 | limsupequz.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 5 | limsupequz.7 | . 2 ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) | |
| 6 | limsupequz.8 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 7 | limsupequz.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 8 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (ℤ≥‘𝐾) | |
| 9 | 7, 8 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) |
| 10 | limsupequz.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 11 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 12 | 10, 11 | nffv 6891 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 13 | limsupequz.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
| 14 | 13, 11 | nffv 6891 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
| 15 | 12, 14 | nfeq 2913 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
| 16 | 9, 15 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
| 17 | eleq1w 2818 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (ℤ≥‘𝐾) ↔ 𝑗 ∈ (ℤ≥‘𝐾))) | |
| 18 | 17 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ↔ (𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)))) |
| 19 | fveq2 6881 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 20 | fveq2 6881 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
| 21 | 19, 20 | eqeq12d 2752 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
| 22 | 18, 21 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
| 23 | limsupequz.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 24 | 16, 22, 23 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
| 25 | 1, 2, 3, 4, 5, 6, 24 | limsupequzlem 45718 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 Fn wfn 6531 ‘cfv 6536 ℤcz 12593 ℤ≥cuz 12857 lim supclsp 15491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-ico 13373 df-limsup 15492 |
| This theorem is referenced by: limsupequzmptlem 45724 smflimsuplem2 46817 |
| Copyright terms: Public domain | W3C validator |