Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequz Structured version   Visualization version   GIF version

Theorem limsupequz 45769
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequz.1 𝑘𝜑
limsupequz.2 𝑘𝐹
limsupequz.3 𝑘𝐺
limsupequz.4 (𝜑𝑀 ∈ ℤ)
limsupequz.5 (𝜑𝐹 Fn (ℤ𝑀))
limsupequz.6 (𝜑𝑁 ∈ ℤ)
limsupequz.7 (𝜑𝐺 Fn (ℤ𝑁))
limsupequz.8 (𝜑𝐾 ∈ ℤ)
limsupequz.9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
limsupequz (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Distinct variable group:   𝑘,𝐾
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑁(𝑘)

Proof of Theorem limsupequz
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑗𝜑
2 limsupequz.4 . 2 (𝜑𝑀 ∈ ℤ)
3 limsupequz.5 . 2 (𝜑𝐹 Fn (ℤ𝑀))
4 limsupequz.6 . 2 (𝜑𝑁 ∈ ℤ)
5 limsupequz.7 . 2 (𝜑𝐺 Fn (ℤ𝑁))
6 limsupequz.8 . 2 (𝜑𝐾 ∈ ℤ)
7 limsupequz.1 . . . . 5 𝑘𝜑
8 nfv 1915 . . . . 5 𝑘 𝑗 ∈ (ℤ𝐾)
97, 8nfan 1900 . . . 4 𝑘(𝜑𝑗 ∈ (ℤ𝐾))
10 limsupequz.2 . . . . . 6 𝑘𝐹
11 nfcv 2894 . . . . . 6 𝑘𝑗
1210, 11nffv 6832 . . . . 5 𝑘(𝐹𝑗)
13 limsupequz.3 . . . . . 6 𝑘𝐺
1413, 11nffv 6832 . . . . 5 𝑘(𝐺𝑗)
1512, 14nfeq 2908 . . . 4 𝑘(𝐹𝑗) = (𝐺𝑗)
169, 15nfim 1897 . . 3 𝑘((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐹𝑗) = (𝐺𝑗))
17 eleq1w 2814 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (ℤ𝐾) ↔ 𝑗 ∈ (ℤ𝐾)))
1817anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (ℤ𝐾)) ↔ (𝜑𝑗 ∈ (ℤ𝐾))))
19 fveq2 6822 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
20 fveq2 6822 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2119, 20eqeq12d 2747 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2218, 21imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐹𝑗) = (𝐺𝑗))))
23 limsupequz.9 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
2416, 22, 23chvarfv 2243 . 2 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐹𝑗) = (𝐺𝑗))
251, 2, 3, 4, 5, 6, 24limsupequzlem 45768 1 (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879   Fn wfn 6476  cfv 6481  cz 12468  cuz 12732  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-ico 13251  df-limsup 15378
This theorem is referenced by:  limsupequzmptlem  45774  smflimsuplem2  46867
  Copyright terms: Public domain W3C validator