| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0addge2 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| nn0addge2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝑁 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12458 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | nn0ge0 12474 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) |
| 4 | addge02 11696 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ 𝐴 ≤ (𝑁 + 𝐴))) | |
| 5 | 4 | biimp3a 1471 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → 𝐴 ≤ (𝑁 + 𝐴)) |
| 6 | 5 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) → 𝐴 ≤ (𝑁 + 𝐴)) |
| 7 | 3, 6 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝑁 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 + caddc 11078 ≤ cle 11216 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 |
| This theorem is referenced by: nn0addge2i 12498 nn0pzuz 12871 sylow1lem1 19535 psdmvr 22063 2sqblem 27349 2sq2 27351 iwrdsplit 34385 fsum2dsub 34605 eldioph2lem1 42755 |
| Copyright terms: Public domain | W3C validator |