MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0pzuz Structured version   Visualization version   GIF version

Theorem nn0pzuz 12531
Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
Assertion
Ref Expression
nn0pzuz ((𝑁 ∈ ℕ0𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ𝑍))

Proof of Theorem nn0pzuz
StepHypRef Expression
1 simpr 488 . 2 ((𝑁 ∈ ℕ0𝑍 ∈ ℤ) → 𝑍 ∈ ℤ)
2 nn0z 12230 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 zaddcl 12247 . . 3 ((𝑁 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ ℤ)
42, 3sylan 583 . 2 ((𝑁 ∈ ℕ0𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ ℤ)
5 zre 12210 . . . 4 (𝑍 ∈ ℤ → 𝑍 ∈ ℝ)
6 nn0addge2 12167 . . . 4 ((𝑍 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑍 ≤ (𝑁 + 𝑍))
75, 6sylan 583 . . 3 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑍 ≤ (𝑁 + 𝑍))
87ancoms 462 . 2 ((𝑁 ∈ ℕ0𝑍 ∈ ℤ) → 𝑍 ≤ (𝑁 + 𝑍))
9 eluz2 12474 . 2 ((𝑁 + 𝑍) ∈ (ℤ𝑍) ↔ (𝑍 ∈ ℤ ∧ (𝑁 + 𝑍) ∈ ℤ ∧ 𝑍 ≤ (𝑁 + 𝑍)))
101, 4, 8, 9syl3anbrc 1345 1 ((𝑁 ∈ ℕ0𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112   class class class wbr 5070  cfv 6401  (class class class)co 7235  cr 10758   + caddc 10762  cle 10898  0cn0 12120  cz 12206  cuz 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-er 8415  df-en 8651  df-dom 8652  df-sdom 8653  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-n0 12121  df-z 12207  df-uz 12469
This theorem is referenced by:  elfzoext  13329  ccatalpha  14183  gausslemma2dlem6  26285  numclwwlk2lem1  28491  numclwlk2lem2f  28492  numclwlk2lem2f1o  28494
  Copyright terms: Public domain W3C validator