Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0enn0ex Structured version   Visualization version   GIF version

Theorem nn0enn0ex 44591
Description: For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nn0enn0ex ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚))
Distinct variable group:   𝑚,𝑁

Proof of Theorem nn0enn0ex
StepHypRef Expression
1 simpr 487 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℕ0)
2 oveq2 7167 . . . 4 (𝑚 = (𝑁 / 2) → (2 · 𝑚) = (2 · (𝑁 / 2)))
32adantl 484 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) ∧ 𝑚 = (𝑁 / 2)) → (2 · 𝑚) = (2 · (𝑁 / 2)))
43eqeq2d 2835 . 2 (((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) ∧ 𝑚 = (𝑁 / 2)) → (𝑁 = (2 · 𝑚) ↔ 𝑁 = (2 · (𝑁 / 2))))
5 nn0cn 11910 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
6 2cnd 11718 . . . 4 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
7 2ne0 11744 . . . . 5 2 ≠ 0
87a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 2 ≠ 0)
9 divcan2 11309 . . . . 5 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝑁 / 2)) = 𝑁)
109eqcomd 2830 . . . 4 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → 𝑁 = (2 · (𝑁 / 2)))
115, 6, 8, 10syl3anc 1367 . . 3 (𝑁 ∈ ℕ0𝑁 = (2 · (𝑁 / 2)))
1211adantr 483 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 = (2 · (𝑁 / 2)))
131, 4, 12rspcedvd 3629 1 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142  (class class class)co 7159  cc 10538  0cc0 10540   · cmul 10545   / cdiv 11300  2c2 11695  0cn0 11900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator