| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0onn0ex | Structured version Visualization version GIF version | ||
| Description: For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) |
| Ref | Expression |
|---|---|
| nn0onn0ex | ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0o 16289 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | |
| 3 | oveq2 7349 | . . . . . 6 ⊢ (𝑚 = ((𝑁 − 1) / 2) → (2 · 𝑚) = (2 · ((𝑁 − 1) / 2))) | |
| 4 | 3 | oveq1d 7356 | . . . . 5 ⊢ (𝑚 = ((𝑁 − 1) / 2) → ((2 · 𝑚) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1)) |
| 5 | 4 | eqeq2d 2742 | . . . 4 ⊢ (𝑚 = ((𝑁 − 1) / 2) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))) |
| 6 | 5 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) ∧ 𝑚 = ((𝑁 − 1) / 2)) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))) |
| 7 | nn0cn 12386 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 8 | peano2cnm 11422 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ) |
| 10 | 2cnd 12198 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) | |
| 11 | 2ne0 12224 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ≠ 0) |
| 13 | 9, 10, 12 | divcan2d 11894 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1)) |
| 14 | 13 | oveq1d 7356 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1)) |
| 15 | npcan1 11537 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
| 16 | 7, 15 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁) |
| 17 | 14, 16 | eqtr2d 2767 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)) |
| 19 | 2, 6, 18 | rspcedvd 3574 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
| 20 | 1, 19 | syldan 591 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 − cmin 11339 / cdiv 11769 2c2 12175 ℕ0cn0 12376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |