MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsinds Structured version   Visualization version   GIF version

Theorem nnsinds 13929
Description: Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.)
Hypotheses
Ref Expression
nnsinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
nnsinds.2 (𝑥 = 𝑁 → (𝜑𝜒))
nnsinds.3 (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓𝜑))
Assertion
Ref Expression
nnsinds (𝑁 ∈ ℕ → 𝜒)
Distinct variable groups:   𝜒,𝑥   𝑥,𝑁   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝑁(𝑦)

Proof of Theorem nnsinds
StepHypRef Expression
1 elnnuz 12813 . 2 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
2 nnsinds.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
3 nnsinds.2 . . 3 (𝑥 = 𝑁 → (𝜑𝜒))
4 elnnuz 12813 . . . 4 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
5 nnsinds.3 . . . 4 (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓𝜑))
64, 5sylbir 235 . . 3 (𝑥 ∈ (ℤ‘1) → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓𝜑))
72, 3, 6uzsinds 13928 . 2 (𝑁 ∈ (ℤ‘1) → 𝜒)
81, 7sylbi 217 1 (𝑁 ∈ ℕ → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369  1c1 11045  cmin 11381  cn 12162  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  bpolydif  15997
  Copyright terms: Public domain W3C validator