| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw2divsrecd | Structured version Visualization version GIF version | ||
| Description: Relationship between surreal division and reciprocal for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| pw2divsrecd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| pw2divsrecd.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0s) |
| Ref | Expression |
|---|---|
| pw2divsrecd | ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (𝐴 ·s ( 1s /su (2s↑s𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2divsrecd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | 1 | mulsridd 28058 | . . 3 ⊢ (𝜑 → (𝐴 ·s 1s ) = 𝐴) |
| 3 | 2sno 28347 | . . . . . 6 ⊢ 2s ∈ No | |
| 4 | pw2divsrecd.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0s) | |
| 5 | expscl 28359 | . . . . . 6 ⊢ ((2s ∈ No ∧ 𝑁 ∈ ℕ0s) → (2s↑s𝑁) ∈ No ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (2s↑s𝑁) ∈ No ) |
| 7 | 1sno 27777 | . . . . . . 7 ⊢ 1s ∈ No | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1s ∈ No ) |
| 9 | 8, 4 | pw2divscld 28367 | . . . . 5 ⊢ (𝜑 → ( 1s /su (2s↑s𝑁)) ∈ No ) |
| 10 | 6, 1, 9 | muls12d 28125 | . . . 4 ⊢ (𝜑 → ((2s↑s𝑁) ·s (𝐴 ·s ( 1s /su (2s↑s𝑁)))) = (𝐴 ·s ((2s↑s𝑁) ·s ( 1s /su (2s↑s𝑁))))) |
| 11 | 8, 4 | pw2divscan2d 28370 | . . . . 5 ⊢ (𝜑 → ((2s↑s𝑁) ·s ( 1s /su (2s↑s𝑁))) = 1s ) |
| 12 | 11 | oveq2d 7385 | . . . 4 ⊢ (𝜑 → (𝐴 ·s ((2s↑s𝑁) ·s ( 1s /su (2s↑s𝑁)))) = (𝐴 ·s 1s )) |
| 13 | 10, 12 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((2s↑s𝑁) ·s (𝐴 ·s ( 1s /su (2s↑s𝑁)))) = (𝐴 ·s 1s )) |
| 14 | 1, 4 | pw2divscan2d 28370 | . . 3 ⊢ (𝜑 → ((2s↑s𝑁) ·s (𝐴 /su (2s↑s𝑁))) = 𝐴) |
| 15 | 2, 13, 14 | 3eqtr4rd 2775 | . 2 ⊢ (𝜑 → ((2s↑s𝑁) ·s (𝐴 /su (2s↑s𝑁))) = ((2s↑s𝑁) ·s (𝐴 ·s ( 1s /su (2s↑s𝑁))))) |
| 16 | 1, 4 | pw2divscld 28367 | . . 3 ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) ∈ No ) |
| 17 | 1, 9 | mulscld 28079 | . . 3 ⊢ (𝜑 → (𝐴 ·s ( 1s /su (2s↑s𝑁))) ∈ No ) |
| 18 | 2ne0s 28348 | . . . 4 ⊢ 2s ≠ 0s | |
| 19 | expsne0 28364 | . . . 4 ⊢ ((2s ∈ No ∧ 2s ≠ 0s ∧ 𝑁 ∈ ℕ0s) → (2s↑s𝑁) ≠ 0s ) | |
| 20 | 3, 18, 4, 19 | mp3an12i 1467 | . . 3 ⊢ (𝜑 → (2s↑s𝑁) ≠ 0s ) |
| 21 | 16, 17, 6, 20 | mulscan1d 28124 | . 2 ⊢ (𝜑 → (((2s↑s𝑁) ·s (𝐴 /su (2s↑s𝑁))) = ((2s↑s𝑁) ·s (𝐴 ·s ( 1s /su (2s↑s𝑁)))) ↔ (𝐴 /su (2s↑s𝑁)) = (𝐴 ·s ( 1s /su (2s↑s𝑁))))) |
| 22 | 15, 21 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (𝐴 ·s ( 1s /su (2s↑s𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7369 No csur 27585 0s c0s 27772 1s c1s 27773 ·s cmuls 28050 /su cdivs 28131 ℕ0scnn0s 28247 2sc2s 28338 ↑scexps 28340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-nadd 8607 df-no 27588 df-slt 27589 df-bday 27590 df-sle 27691 df-sslt 27728 df-scut 27730 df-0s 27774 df-1s 27775 df-made 27793 df-old 27794 df-left 27796 df-right 27797 df-norec 27886 df-norec2 27897 df-adds 27908 df-negs 27968 df-subs 27969 df-muls 28051 df-divs 28132 df-seqs 28219 df-n0s 28249 df-nns 28250 df-zs 28308 df-2s 28339 df-exps 28341 |
| This theorem is referenced by: pw2divsdird 28376 |
| Copyright terms: Public domain | W3C validator |