![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qrevaddcl | Structured version Visualization version GIF version |
Description: Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
qrevaddcl | ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qcn 13037 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
2 | pncan 11546 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
3 | 1, 2 | sylan2 592 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
5 | 4 | adantr 480 | . . . . . 6 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
6 | qsubcl 13042 | . . . . . . . 8 ⊢ (((𝐴 + 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) | |
7 | 6 | ancoms 458 | . . . . . . 7 ⊢ ((𝐵 ∈ ℚ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) |
8 | 7 | adantlr 714 | . . . . . 6 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) |
9 | 5, 8 | eqeltrrd 2845 | . . . . 5 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → 𝐴 ∈ ℚ) |
10 | 9 | ex 412 | . . . 4 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) ∈ ℚ → 𝐴 ∈ ℚ)) |
11 | qaddcl 13039 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ) | |
12 | 11 | expcom 413 | . . . . 5 ⊢ (𝐵 ∈ ℚ → (𝐴 ∈ ℚ → (𝐴 + 𝐵) ∈ ℚ)) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℚ → (𝐴 + 𝐵) ∈ ℚ)) |
14 | 10, 13 | impbid 212 | . . 3 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ)) |
15 | 14 | pm5.32da 578 | . 2 ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ))) |
16 | qcn 13037 | . . 3 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
17 | 16 | pm4.71ri 560 | . 2 ⊢ (𝐴 ∈ ℚ ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ)) |
18 | 15, 17 | bitr4di 289 | 1 ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7451 ℂcc 11185 + caddc 11190 − cmin 11524 ℚcq 13022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-1st 8033 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-n0 12559 df-z 12646 df-q 13023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |