MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recidi Structured version   Visualization version   GIF version

Theorem recidi 11799
Description: Multiplication of a number and its reciprocal. (Contributed by NM, 9-Feb-1995.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
reccl.2 𝐴 ≠ 0
Assertion
Ref Expression
recidi (𝐴 · (1 / 𝐴)) = 1

Proof of Theorem recidi
StepHypRef Expression
1 reccl.2 . 2 𝐴 ≠ 0
2 divclz.1 . . 3 𝐴 ∈ ℂ
32recidzi 11795 . 2 (𝐴 ≠ 0 → (𝐴 · (1 / 𝐴)) = 1)
41, 3ax-mp 5 1 (𝐴 · (1 / 𝐴)) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  wne 2940  (class class class)co 7329  cc 10962  0cc0 10964  1c1 10965   · cmul 10969   / cdiv 11725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726
This theorem is referenced by:  recgt0ii  11974  rddif  15143  0.999...  15684  bpoly4  15860  htpycc  24241  pcoval2  24277  pcocn  24278  pcohtpylem  24280  pcopt  24283  pcopt2  24284  pcoass  24285  pcorevlem  24287  minveclem2  24688  sincos4thpi  25768  dquartlem1  26099  ipdirilem  29420  minvecolem2  29466  opsqrlem6  30736  dirkertrigeqlem3  43966  dirkertrigeq  43967  fourierdlem57  44029  fourierdlem58  44030  fourierdlem62  44034
  Copyright terms: Public domain W3C validator