| Step | Hyp | Ref
| Expression |
| 1 | | reprgt.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (1...𝑁)) |
| 2 | | fz1ssnn 13577 |
. . . 4
⊢
(1...𝑁) ⊆
ℕ |
| 3 | 1, 2 | sstrdi 3976 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| 4 | | reprgt.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 5 | | reprgt.s |
. . 3
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
| 6 | 3, 4, 5 | reprval 34647 |
. 2
⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 7 | | fzofi 13997 |
. . . . . . . 8
⊢
(0..^𝑆) ∈
Fin |
| 8 | 7 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → (0..^𝑆) ∈ Fin) |
| 9 | | nnssre 12249 |
. . . . . . . . . . . . 13
⊢ ℕ
⊆ ℝ |
| 10 | 3, 9 | sstrdi 3976 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 11 | 10 | ralrimivw 3137 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ) |
| 12 | 11 | ralrimivw 3137 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑐 ∈ (𝐴 ↑m (0..^𝑆))∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ) |
| 13 | 12 | r19.21bi 3238 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ) |
| 14 | 13 | r19.21bi 3238 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ) |
| 15 | | ovex 7443 |
. . . . . . . . . . . . . 14
⊢
(1...𝑁) ∈
V |
| 16 | 15 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...𝑁) ∈ V) |
| 17 | 16, 1 | ssexd 5299 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ V) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → 𝐴 ∈ V) |
| 19 | 7 | elexi 3487 |
. . . . . . . . . . . 12
⊢
(0..^𝑆) ∈
V |
| 20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → (0..^𝑆) ∈ V) |
| 21 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
| 22 | | elmapg 8858 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴)) |
| 23 | 22 | biimpa 476 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴) |
| 24 | 18, 20, 21, 23 | syl21anc 837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴) |
| 25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴) |
| 26 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
| 27 | 25, 26 | ffvelcdmd 7080 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ 𝐴) |
| 28 | 14, 27 | sseldd 3964 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ ℝ) |
| 29 | 8, 28 | fsumrecl 15755 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) ∈ ℝ) |
| 30 | 5 | nn0red 12568 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → 𝑆 ∈ ℝ) |
| 32 | | reprgt.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 33 | 32 | nn0red 12568 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 34 | 33 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → 𝑁 ∈ ℝ) |
| 35 | 31, 34 | remulcld 11270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → (𝑆 · 𝑁) ∈ ℝ) |
| 36 | 4 | zred 12702 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 37 | 36 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → 𝑀 ∈ ℝ) |
| 38 | 33 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℝ) |
| 39 | 1 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ (1...𝑁)) |
| 40 | 39, 27 | sseldd 3964 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ (1...𝑁)) |
| 41 | | elfzle2 13550 |
. . . . . . . . . 10
⊢ ((𝑐‘𝑎) ∈ (1...𝑁) → (𝑐‘𝑎) ≤ 𝑁) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ≤ 𝑁) |
| 43 | 8, 28, 38, 42 | fsumle 15820 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)𝑁) |
| 44 | 33 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 45 | | fsumconst 15811 |
. . . . . . . . . . 11
⊢
(((0..^𝑆) ∈ Fin
∧ 𝑁 ∈ ℂ)
→ Σ𝑎 ∈
(0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁)) |
| 46 | 7, 44, 45 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁)) |
| 47 | | hashfzo0 14453 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ ℕ0
→ (♯‘(0..^𝑆)) = 𝑆) |
| 48 | 5, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(0..^𝑆)) = 𝑆) |
| 49 | 48 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘(0..^𝑆)) · 𝑁) = (𝑆 · 𝑁)) |
| 50 | 46, 49 | eqtrd 2771 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁)) |
| 51 | 50 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁)) |
| 52 | 43, 51 | breqtrd 5150 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) ≤ (𝑆 · 𝑁)) |
| 53 | | reprgt.1 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 · 𝑁) < 𝑀) |
| 54 | 53 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → (𝑆 · 𝑁) < 𝑀) |
| 55 | 29, 35, 37, 52, 54 | lelttrd 11398 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) < 𝑀) |
| 56 | 29, 55 | ltned 11376 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) ≠ 𝑀) |
| 57 | 56 | neneqd 2938 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀) |
| 58 | 57 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀) |
| 59 | | rabeq0 4368 |
. . 3
⊢ ({𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀) |
| 60 | 58, 59 | sylibr 234 |
. 2
⊢ (𝜑 → {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} = ∅) |
| 61 | 6, 60 | eqtrd 2771 |
1
⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅) |