Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprgt Structured version   Visualization version   GIF version

Theorem reprgt 34591
Description: There are no representations of more than (𝑆 · 𝑁) with only 𝑆 terms bounded by 𝑁. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprgt.n (𝜑𝑁 ∈ ℕ0)
reprgt.a (𝜑𝐴 ⊆ (1...𝑁))
reprgt.m (𝜑𝑀 ∈ ℤ)
reprgt.s (𝜑𝑆 ∈ ℕ0)
reprgt.1 (𝜑 → (𝑆 · 𝑁) < 𝑀)
Assertion
Ref Expression
reprgt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprgt
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprgt.a . . . 4 (𝜑𝐴 ⊆ (1...𝑁))
2 fz1ssnn 13476 . . . 4 (1...𝑁) ⊆ ℕ
31, 2sstrdi 3950 . . 3 (𝜑𝐴 ⊆ ℕ)
4 reprgt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 reprgt.s . . 3 (𝜑𝑆 ∈ ℕ0)
63, 4, 5reprval 34580 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fzofi 13899 . . . . . . . 8 (0..^𝑆) ∈ Fin
87a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ Fin)
9 nnssre 12150 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
103, 9sstrdi 3950 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
1110ralrimivw 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1211ralrimivw 3125 . . . . . . . . . 10 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆))∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1312r19.21bi 3221 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1413r19.21bi 3221 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 ovex 7386 . . . . . . . . . . . . . 14 (1...𝑁) ∈ V
1615a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1...𝑁) ∈ V)
1716, 1ssexd 5266 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
1817adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝐴 ∈ V)
197elexi 3461 . . . . . . . . . . . 12 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 484 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
22 elmapg 8773 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 837 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 480 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 484 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelcdmd 7023 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3938 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
298, 28fsumrecl 15659 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
305nn0red 12464 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
3130adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ∈ ℝ)
32 reprgt.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
3332nn0red 12464 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑁 ∈ ℝ)
3531, 34remulcld 11164 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (𝑆 · 𝑁) ∈ ℝ)
364zred 12598 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3736adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ∈ ℝ)
3833ad2antrr 726 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℝ)
391ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ (1...𝑁))
4039, 27sseldd 3938 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
41 elfzle2 13449 . . . . . . . . . 10 ((𝑐𝑎) ∈ (1...𝑁) → (𝑐𝑎) ≤ 𝑁)
4240, 41syl 17 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ≤ 𝑁)
438, 28, 38, 42fsumle 15724 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)𝑁)
4433recnd 11162 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
45 fsumconst 15715 . . . . . . . . . . 11 (((0..^𝑆) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁))
467, 44, 45sylancr 587 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁))
47 hashfzo0 14355 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
485, 47syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
4948oveq1d 7368 . . . . . . . . . 10 (𝜑 → ((♯‘(0..^𝑆)) · 𝑁) = (𝑆 · 𝑁))
5046, 49eqtrd 2764 . . . . . . . . 9 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5150adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5243, 51breqtrd 5121 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ (𝑆 · 𝑁))
53 reprgt.1 . . . . . . . 8 (𝜑 → (𝑆 · 𝑁) < 𝑀)
5453adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (𝑆 · 𝑁) < 𝑀)
5529, 35, 37, 52, 54lelttrd 11292 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) < 𝑀)
5629, 55ltned 11270 . . . . 5 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5756neneqd 2930 . . . 4 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5857ralrimiva 3121 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
59 rabeq0 4341 . . 3 ({𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
6058, 59sylibr 234 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
616, 60eqtrd 2764 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  wss 3905  c0 4286   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169  cn 12146  0cn0 12402  cz 12489  ...cfz 13428  ..^cfzo 13575  chash 14255  Σcsu 15611  reprcrepr 34578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-repr 34579
This theorem is referenced by:  breprexplemc  34602
  Copyright terms: Public domain W3C validator