Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprgt Structured version   Visualization version   GIF version

Theorem reprgt 34615
Description: There are no representations of more than (𝑆 · 𝑁) with only 𝑆 terms bounded by 𝑁. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprgt.n (𝜑𝑁 ∈ ℕ0)
reprgt.a (𝜑𝐴 ⊆ (1...𝑁))
reprgt.m (𝜑𝑀 ∈ ℤ)
reprgt.s (𝜑𝑆 ∈ ℕ0)
reprgt.1 (𝜑 → (𝑆 · 𝑁) < 𝑀)
Assertion
Ref Expression
reprgt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprgt
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprgt.a . . . 4 (𝜑𝐴 ⊆ (1...𝑁))
2 fz1ssnn 13592 . . . 4 (1...𝑁) ⊆ ℕ
31, 2sstrdi 4008 . . 3 (𝜑𝐴 ⊆ ℕ)
4 reprgt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 reprgt.s . . 3 (𝜑𝑆 ∈ ℕ0)
63, 4, 5reprval 34604 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fzofi 14012 . . . . . . . 8 (0..^𝑆) ∈ Fin
87a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ Fin)
9 nnssre 12268 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
103, 9sstrdi 4008 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
1110ralrimivw 3148 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1211ralrimivw 3148 . . . . . . . . . 10 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆))∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1312r19.21bi 3249 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1413r19.21bi 3249 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 ovex 7464 . . . . . . . . . . . . . 14 (1...𝑁) ∈ V
1615a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1...𝑁) ∈ V)
1716, 1ssexd 5330 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
1817adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝐴 ∈ V)
197elexi 3501 . . . . . . . . . . . 12 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 484 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
22 elmapg 8878 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 838 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 480 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 484 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelcdmd 7105 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3996 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
298, 28fsumrecl 15767 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
305nn0red 12586 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
3130adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ∈ ℝ)
32 reprgt.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
3332nn0red 12586 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑁 ∈ ℝ)
3531, 34remulcld 11289 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (𝑆 · 𝑁) ∈ ℝ)
364zred 12720 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3736adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ∈ ℝ)
3833ad2antrr 726 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℝ)
391ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ (1...𝑁))
4039, 27sseldd 3996 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
41 elfzle2 13565 . . . . . . . . . 10 ((𝑐𝑎) ∈ (1...𝑁) → (𝑐𝑎) ≤ 𝑁)
4240, 41syl 17 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ≤ 𝑁)
438, 28, 38, 42fsumle 15832 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)𝑁)
4433recnd 11287 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
45 fsumconst 15823 . . . . . . . . . . 11 (((0..^𝑆) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁))
467, 44, 45sylancr 587 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁))
47 hashfzo0 14466 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
485, 47syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
4948oveq1d 7446 . . . . . . . . . 10 (𝜑 → ((♯‘(0..^𝑆)) · 𝑁) = (𝑆 · 𝑁))
5046, 49eqtrd 2775 . . . . . . . . 9 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5150adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5243, 51breqtrd 5174 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ (𝑆 · 𝑁))
53 reprgt.1 . . . . . . . 8 (𝜑 → (𝑆 · 𝑁) < 𝑀)
5453adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (𝑆 · 𝑁) < 𝑀)
5529, 35, 37, 52, 54lelttrd 11417 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) < 𝑀)
5629, 55ltned 11395 . . . . 5 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5756neneqd 2943 . . . 4 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5857ralrimiva 3144 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
59 rabeq0 4394 . . 3 ({𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
6058, 59sylibr 234 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
616, 60eqtrd 2775 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  wss 3963  c0 4339   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  ..^cfzo 13691  chash 14366  Σcsu 15719  reprcrepr 34602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-repr 34603
This theorem is referenced by:  breprexplemc  34626
  Copyright terms: Public domain W3C validator