Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprgt Structured version   Visualization version   GIF version

Theorem reprgt 32587
Description: There are no representations of more than (𝑆 · 𝑁) with only 𝑆 terms bounded by 𝑁. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprgt.n (𝜑𝑁 ∈ ℕ0)
reprgt.a (𝜑𝐴 ⊆ (1...𝑁))
reprgt.m (𝜑𝑀 ∈ ℤ)
reprgt.s (𝜑𝑆 ∈ ℕ0)
reprgt.1 (𝜑 → (𝑆 · 𝑁) < 𝑀)
Assertion
Ref Expression
reprgt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprgt
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprgt.a . . . 4 (𝜑𝐴 ⊆ (1...𝑁))
2 fz1ssnn 13275 . . . 4 (1...𝑁) ⊆ ℕ
31, 2sstrdi 3933 . . 3 (𝜑𝐴 ⊆ ℕ)
4 reprgt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 reprgt.s . . 3 (𝜑𝑆 ∈ ℕ0)
63, 4, 5reprval 32576 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fzofi 13682 . . . . . . . 8 (0..^𝑆) ∈ Fin
87a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ Fin)
9 nnssre 11965 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
103, 9sstrdi 3933 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
1110ralrimivw 3114 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1211ralrimivw 3114 . . . . . . . . . 10 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆))∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1312r19.21bi 3133 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1413r19.21bi 3133 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 ovex 7301 . . . . . . . . . . . . . 14 (1...𝑁) ∈ V
1615a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1...𝑁) ∈ V)
1716, 1ssexd 5247 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
1817adantr 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝐴 ∈ V)
197elexi 3449 . . . . . . . . . . . 12 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 485 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
22 elmapg 8616 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 477 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 835 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 481 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 485 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelrnd 6955 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3922 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
298, 28fsumrecl 15434 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
305nn0red 12282 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
3130adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ∈ ℝ)
32 reprgt.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
3332nn0red 12282 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3433adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑁 ∈ ℝ)
3531, 34remulcld 10993 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (𝑆 · 𝑁) ∈ ℝ)
364zred 12414 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3736adantr 481 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ∈ ℝ)
3833ad2antrr 723 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℝ)
391ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ (1...𝑁))
4039, 27sseldd 3922 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
41 elfzle2 13248 . . . . . . . . . 10 ((𝑐𝑎) ∈ (1...𝑁) → (𝑐𝑎) ≤ 𝑁)
4240, 41syl 17 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ≤ 𝑁)
438, 28, 38, 42fsumle 15499 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)𝑁)
4433recnd 10991 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
45 fsumconst 15490 . . . . . . . . . . 11 (((0..^𝑆) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁))
467, 44, 45sylancr 587 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁))
47 hashfzo0 14133 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
485, 47syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
4948oveq1d 7283 . . . . . . . . . 10 (𝜑 → ((♯‘(0..^𝑆)) · 𝑁) = (𝑆 · 𝑁))
5046, 49eqtrd 2778 . . . . . . . . 9 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5150adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5243, 51breqtrd 5100 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ (𝑆 · 𝑁))
53 reprgt.1 . . . . . . . 8 (𝜑 → (𝑆 · 𝑁) < 𝑀)
5453adantr 481 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (𝑆 · 𝑁) < 𝑀)
5529, 35, 37, 52, 54lelttrd 11121 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) < 𝑀)
5629, 55ltned 11099 . . . . 5 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5756neneqd 2948 . . . 4 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5857ralrimiva 3113 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
59 rabeq0 4319 . . 3 ({𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
6058, 59sylibr 233 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
616, 60eqtrd 2778 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3430  wss 3887  c0 4257   class class class wbr 5074  wf 6423  cfv 6427  (class class class)co 7268  m cmap 8603  Fincfn 8721  cc 10857  cr 10858  0cc0 10859  1c1 10860   · cmul 10864   < clt 10997  cle 10998  cn 11961  0cn0 12221  cz 12307  ...cfz 13227  ..^cfzo 13370  chash 14032  Σcsu 15385  reprcrepr 32574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-map 8605  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-sup 9189  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-n0 12222  df-z 12308  df-uz 12571  df-rp 12719  df-ico 13073  df-fz 13228  df-fzo 13371  df-seq 13710  df-exp 13771  df-hash 14033  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-clim 15185  df-sum 15386  df-repr 32575
This theorem is referenced by:  breprexplemc  32598
  Copyright terms: Public domain W3C validator