Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprgt Structured version   Visualization version   GIF version

Theorem reprgt 31894
Description: There are no representations of more than (𝑆 · 𝑁) with only 𝑆 terms bounded by 𝑁. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprgt.n (𝜑𝑁 ∈ ℕ0)
reprgt.a (𝜑𝐴 ⊆ (1...𝑁))
reprgt.m (𝜑𝑀 ∈ ℤ)
reprgt.s (𝜑𝑆 ∈ ℕ0)
reprgt.1 (𝜑 → (𝑆 · 𝑁) < 𝑀)
Assertion
Ref Expression
reprgt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprgt
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprgt.a . . . 4 (𝜑𝐴 ⊆ (1...𝑁))
2 fz1ssnn 12941 . . . 4 (1...𝑁) ⊆ ℕ
31, 2sstrdi 3981 . . 3 (𝜑𝐴 ⊆ ℕ)
4 reprgt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 reprgt.s . . 3 (𝜑𝑆 ∈ ℕ0)
63, 4, 5reprval 31883 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fzofi 13345 . . . . . . . 8 (0..^𝑆) ∈ Fin
87a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ Fin)
9 nnssre 11644 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
103, 9sstrdi 3981 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
1110ralrimivw 3185 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1211ralrimivw 3185 . . . . . . . . . 10 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆))∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1312r19.21bi 3210 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1413r19.21bi 3210 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 ovex 7191 . . . . . . . . . . . . . 14 (1...𝑁) ∈ V
1615a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1...𝑁) ∈ V)
1716, 1ssexd 5230 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
1817adantr 483 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝐴 ∈ V)
197elexi 3515 . . . . . . . . . . . 12 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 487 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
22 elmapg 8421 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 479 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 835 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 483 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 487 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelrnd 6854 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3970 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
298, 28fsumrecl 15093 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
305nn0red 11959 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
3130adantr 483 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ∈ ℝ)
32 reprgt.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
3332nn0red 11959 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3433adantr 483 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑁 ∈ ℝ)
3531, 34remulcld 10673 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (𝑆 · 𝑁) ∈ ℝ)
364zred 12090 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3736adantr 483 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ∈ ℝ)
3833ad2antrr 724 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℝ)
391ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ (1...𝑁))
4039, 27sseldd 3970 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
41 elfzle2 12914 . . . . . . . . . 10 ((𝑐𝑎) ∈ (1...𝑁) → (𝑐𝑎) ≤ 𝑁)
4240, 41syl 17 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ≤ 𝑁)
438, 28, 38, 42fsumle 15156 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)𝑁)
4433recnd 10671 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
45 fsumconst 15147 . . . . . . . . . . 11 (((0..^𝑆) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁))
467, 44, 45sylancr 589 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((♯‘(0..^𝑆)) · 𝑁))
47 hashfzo0 13794 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
485, 47syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
4948oveq1d 7173 . . . . . . . . . 10 (𝜑 → ((♯‘(0..^𝑆)) · 𝑁) = (𝑆 · 𝑁))
5046, 49eqtrd 2858 . . . . . . . . 9 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5150adantr 483 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5243, 51breqtrd 5094 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ (𝑆 · 𝑁))
53 reprgt.1 . . . . . . . 8 (𝜑 → (𝑆 · 𝑁) < 𝑀)
5453adantr 483 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (𝑆 · 𝑁) < 𝑀)
5529, 35, 37, 52, 54lelttrd 10800 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) < 𝑀)
5629, 55ltned 10778 . . . . 5 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5756neneqd 3023 . . . 4 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5857ralrimiva 3184 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
59 rabeq0 4340 . . 3 ({𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
6058, 59sylibr 236 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
616, 60eqtrd 2858 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  wss 3938  c0 4293   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678  cn 11640  0cn0 11900  cz 11984  ...cfz 12895  ..^cfzo 13036  chash 13693  Σcsu 15044  reprcrepr 31881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-repr 31882
This theorem is referenced by:  breprexplemc  31905
  Copyright terms: Public domain W3C validator