Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrn2 Structured version   Visualization version   GIF version

Theorem swrdrn2 30625
 Description: The range of a subword is a subset of the range of that word. Stronger version of swrdrn 14003. (Contributed by Thierry Arnoux, 12-Dec-2023.)
Assertion
Ref Expression
swrdrn2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ ran 𝑊)

Proof of Theorem swrdrn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdval2 13997 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))))
21rneqd 5789 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))))
3 eqidd 2825 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (♯‘𝑊) = (♯‘𝑊))
4 simpl1 1188 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑊 ∈ Word 𝑉)
53, 4wrdfd 30609 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
65ffund 6499 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → Fun 𝑊)
7 elfzuz3 12897 . . . . . . . . . 10 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
873ad2ant3 1132 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑁))
98adantr 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (♯‘𝑊) ∈ (ℤ𝑁))
10 fzoss2 13058 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
119, 10syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
12 elfzuz 12896 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
13123ad2ant2 1131 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ (ℤ‘0))
1413adantr 484 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (ℤ‘0))
15 fzoss1 13057 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
1614, 15syl 17 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑀..^𝑁) ⊆ (0..^𝑁))
17 simpr 488 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑥 ∈ (0..^(𝑁𝑀)))
18 fzssz 12902 . . . . . . . . . 10 (0...(♯‘𝑊)) ⊆ ℤ
19 simpl3 1190 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘𝑊)))
2018, 19sseldi 3949 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
21 fzssz 12902 . . . . . . . . . 10 (0...𝑁) ⊆ ℤ
22 simpl2 1189 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
2321, 22sseldi 3949 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
24 fzoaddel2 13086 . . . . . . . . 9 ((𝑥 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2517, 20, 23, 24syl3anc 1368 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2616, 25sseldd 3952 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝑁))
2711, 26sseldd 3952 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑊)))
28 wrddm 13862 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
29283ad2ant1 1130 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → dom 𝑊 = (0..^(♯‘𝑊)))
3029adantr 484 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → dom 𝑊 = (0..^(♯‘𝑊)))
3127, 30eleqtrrd 2919 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ dom 𝑊)
32 fvelrn 6825 . . . . 5 ((Fun 𝑊 ∧ (𝑥 + 𝑀) ∈ dom 𝑊) → (𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
336, 31, 32syl2anc 587 . . . 4 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
3433ralrimiva 3176 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∀𝑥 ∈ (0..^(𝑁𝑀))(𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
35 eqid 2824 . . . 4 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀)))
3635rnmptss 6867 . . 3 (∀𝑥 ∈ (0..^(𝑁𝑀))(𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊 → ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) ⊆ ran 𝑊)
3734, 36syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) ⊆ ran 𝑊)
382, 37eqsstrd 3989 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ ran 𝑊)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3132   ⊆ wss 3918  ⟨cop 4554   ↦ cmpt 5127  dom cdm 5536  ran crn 5537  Fun wfun 6330  ‘cfv 6336  (class class class)co 7138  0cc0 10522   + caddc 10525   − cmin 10855  ℤcz 11967  ℤ≥cuz 12229  ...cfz 12883  ..^cfzo 13026  ♯chash 13684  Word cword 13855   substr csubstr 13991 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-fzo 13027  df-hash 13685  df-word 13856  df-substr 13992 This theorem is referenced by:  cycpmco2f1  30784
 Copyright terms: Public domain W3C validator