| Step | Hyp | Ref
| Expression |
| 1 | | swrdval2 14684 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑥 ∈ (0..^(𝑁 − 𝑀)) ↦ (𝑊‘(𝑥 + 𝑀)))) |
| 2 | 1 | rneqd 5949 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) = ran (𝑥 ∈ (0..^(𝑁 − 𝑀)) ↦ (𝑊‘(𝑥 + 𝑀)))) |
| 3 | | eqidd 2738 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (♯‘𝑊) = (♯‘𝑊)) |
| 4 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → 𝑊 ∈ Word 𝑉) |
| 5 | 3, 4 | wrdfd 32918 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → 𝑊:(0..^(♯‘𝑊))⟶𝑉) |
| 6 | 5 | ffund 6740 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → Fun 𝑊) |
| 7 | | elfzuz3 13561 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(0...(♯‘𝑊))
→ (♯‘𝑊)
∈ (ℤ≥‘𝑁)) |
| 8 | 7 | 3ad2ant3 1136 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈
(ℤ≥‘𝑁)) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (♯‘𝑊) ∈ (ℤ≥‘𝑁)) |
| 10 | | fzoss2 13727 |
. . . . . . . 8
⊢
((♯‘𝑊)
∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊))) |
| 11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (0..^𝑁) ⊆ (0..^(♯‘𝑊))) |
| 12 | | elfzuz 13560 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈
(ℤ≥‘0)) |
| 13 | 12 | 3ad2ant2 1135 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑀 ∈
(ℤ≥‘0)) |
| 14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → 𝑀 ∈
(ℤ≥‘0)) |
| 15 | | fzoss1 13726 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (𝑀..^𝑁) ⊆ (0..^𝑁)) |
| 17 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → 𝑥 ∈ (0..^(𝑁 − 𝑀))) |
| 18 | | simpl3 1194 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → 𝑁 ∈ (0...(♯‘𝑊))) |
| 19 | 18 | elfzelzd 13565 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → 𝑁 ∈ ℤ) |
| 20 | | simpl2 1193 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → 𝑀 ∈ (0...𝑁)) |
| 21 | 20 | elfzelzd 13565 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → 𝑀 ∈ ℤ) |
| 22 | | fzoaddel2 13759 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0..^(𝑁 − 𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁)) |
| 23 | 17, 19, 21, 22 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁)) |
| 24 | 16, 23 | sseldd 3984 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝑁)) |
| 25 | 11, 24 | sseldd 3984 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑊))) |
| 26 | | wrddm 14559 |
. . . . . . . 8
⊢ (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 27 | 26 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → dom 𝑊 = (0..^(♯‘𝑊))) |
| 28 | 27 | adantr 480 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → dom 𝑊 = (0..^(♯‘𝑊))) |
| 29 | 25, 28 | eleqtrrd 2844 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (𝑥 + 𝑀) ∈ dom 𝑊) |
| 30 | | fvelrn 7096 |
. . . . 5
⊢ ((Fun
𝑊 ∧ (𝑥 + 𝑀) ∈ dom 𝑊) → (𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊) |
| 31 | 6, 29, 30 | syl2anc 584 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁 − 𝑀))) → (𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊) |
| 32 | 31 | ralrimiva 3146 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∀𝑥 ∈ (0..^(𝑁 − 𝑀))(𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊) |
| 33 | | eqid 2737 |
. . . 4
⊢ (𝑥 ∈ (0..^(𝑁 − 𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁 − 𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) |
| 34 | 33 | rnmptss 7143 |
. . 3
⊢
(∀𝑥 ∈
(0..^(𝑁 − 𝑀))(𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊 → ran (𝑥 ∈ (0..^(𝑁 − 𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) ⊆ ran 𝑊) |
| 35 | 32, 34 | syl 17 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑥 ∈ (0..^(𝑁 − 𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) ⊆ ran 𝑊) |
| 36 | 2, 35 | eqsstrd 4018 |
1
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) ⊆ ran 𝑊) |