Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrn2 Structured version   Visualization version   GIF version

Theorem swrdrn2 32942
Description: The range of a subword is a subset of the range of that word. Stronger version of swrdrn 14562. (Contributed by Thierry Arnoux, 12-Dec-2023.)
Assertion
Ref Expression
swrdrn2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ ran 𝑊)

Proof of Theorem swrdrn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdval2 14556 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))))
21rneqd 5882 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))))
3 eqidd 2734 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (♯‘𝑊) = (♯‘𝑊))
4 simpl1 1192 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑊 ∈ Word 𝑉)
53, 4wrdfd 14428 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
65ffund 6660 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → Fun 𝑊)
7 elfzuz3 13423 . . . . . . . . . 10 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
873ad2ant3 1135 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑁))
98adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (♯‘𝑊) ∈ (ℤ𝑁))
10 fzoss2 13589 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
119, 10syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
12 elfzuz 13422 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
13123ad2ant2 1134 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ (ℤ‘0))
1413adantr 480 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (ℤ‘0))
15 fzoss1 13588 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
1614, 15syl 17 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑀..^𝑁) ⊆ (0..^𝑁))
17 simpr 484 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑥 ∈ (0..^(𝑁𝑀)))
18 simpl3 1194 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘𝑊)))
1918elfzelzd 13427 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
20 simpl2 1193 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
2120elfzelzd 13427 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
22 fzoaddel2 13622 . . . . . . . . 9 ((𝑥 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2317, 19, 21, 22syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2416, 23sseldd 3931 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝑁))
2511, 24sseldd 3931 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑊)))
26 wrddm 14430 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
27263ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → dom 𝑊 = (0..^(♯‘𝑊)))
2827adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → dom 𝑊 = (0..^(♯‘𝑊)))
2925, 28eleqtrrd 2836 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ dom 𝑊)
30 fvelrn 7015 . . . . 5 ((Fun 𝑊 ∧ (𝑥 + 𝑀) ∈ dom 𝑊) → (𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
316, 29, 30syl2anc 584 . . . 4 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
3231ralrimiva 3125 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∀𝑥 ∈ (0..^(𝑁𝑀))(𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
33 eqid 2733 . . . 4 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀)))
3433rnmptss 7062 . . 3 (∀𝑥 ∈ (0..^(𝑁𝑀))(𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊 → ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) ⊆ ran 𝑊)
3532, 34syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) ⊆ ran 𝑊)
362, 35eqsstrd 3965 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ ran 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wss 3898  cop 4581  cmpt 5174  dom cdm 5619  ran crn 5620  Fun wfun 6480  cfv 6486  (class class class)co 7352  0cc0 11013   + caddc 11016  cmin 11351  cz 12475  cuz 12738  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422   substr csubstr 14550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-substr 14551
This theorem is referenced by:  cycpmco2f1  33100
  Copyright terms: Public domain W3C validator