Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrn2 Structured version   Visualization version   GIF version

Theorem swrdrn2 32939
Description: The range of a subword is a subset of the range of that word. Stronger version of swrdrn 14690. (Contributed by Thierry Arnoux, 12-Dec-2023.)
Assertion
Ref Expression
swrdrn2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ ran 𝑊)

Proof of Theorem swrdrn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdval2 14684 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))))
21rneqd 5949 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))))
3 eqidd 2738 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (♯‘𝑊) = (♯‘𝑊))
4 simpl1 1192 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑊 ∈ Word 𝑉)
53, 4wrdfd 32918 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
65ffund 6740 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → Fun 𝑊)
7 elfzuz3 13561 . . . . . . . . . 10 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
873ad2ant3 1136 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑁))
98adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (♯‘𝑊) ∈ (ℤ𝑁))
10 fzoss2 13727 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
119, 10syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
12 elfzuz 13560 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
13123ad2ant2 1135 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ (ℤ‘0))
1413adantr 480 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (ℤ‘0))
15 fzoss1 13726 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
1614, 15syl 17 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑀..^𝑁) ⊆ (0..^𝑁))
17 simpr 484 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑥 ∈ (0..^(𝑁𝑀)))
18 simpl3 1194 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘𝑊)))
1918elfzelzd 13565 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
20 simpl2 1193 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
2120elfzelzd 13565 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
22 fzoaddel2 13759 . . . . . . . . 9 ((𝑥 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2317, 19, 21, 22syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2416, 23sseldd 3984 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝑁))
2511, 24sseldd 3984 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑊)))
26 wrddm 14559 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
27263ad2ant1 1134 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → dom 𝑊 = (0..^(♯‘𝑊)))
2827adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → dom 𝑊 = (0..^(♯‘𝑊)))
2925, 28eleqtrrd 2844 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ dom 𝑊)
30 fvelrn 7096 . . . . 5 ((Fun 𝑊 ∧ (𝑥 + 𝑀) ∈ dom 𝑊) → (𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
316, 29, 30syl2anc 584 . . . 4 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
3231ralrimiva 3146 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∀𝑥 ∈ (0..^(𝑁𝑀))(𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊)
33 eqid 2737 . . . 4 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀)))
3433rnmptss 7143 . . 3 (∀𝑥 ∈ (0..^(𝑁𝑀))(𝑊‘(𝑥 + 𝑀)) ∈ ran 𝑊 → ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) ⊆ ran 𝑊)
3532, 34syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑊‘(𝑥 + 𝑀))) ⊆ ran 𝑊)
362, 35eqsstrd 4018 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ ran 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wss 3951  cop 4632  cmpt 5225  dom cdm 5685  ran crn 5686  Fun wfun 6555  cfv 6561  (class class class)co 7431  0cc0 11155   + caddc 11158  cmin 11492  cz 12613  cuz 12878  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   substr csubstr 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-substr 14679
This theorem is referenced by:  cycpmco2f1  33144
  Copyright terms: Public domain W3C validator