MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpaddcld Structured version   Visualization version   GIF version

Theorem rpaddcld 13027
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
rpaddcld.1 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
rpaddcld (𝜑 → (𝐴 + 𝐵) ∈ ℝ+)

Proof of Theorem rpaddcld
StepHypRef Expression
1 rpred.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpaddcld.1 . 2 (𝜑𝐵 ∈ ℝ+)
3 rpaddcl 12992 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 + 𝐵) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  (class class class)co 7405   + caddc 11109  +crp 12970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-rp 12971
This theorem is referenced by:  xov1plusxeqvd  13471  01sqrexlem7  15191  rpcoshcl  16096  isosctrlem2  26313  lgamucov  26531  relgamcl  26555  2sqmod  26928  pntrlog2bndlem2  27070  pntrlog2bndlem3  27071  pntrlog2bndlem4  27072  pntibndlem3  27084  pntlema  27088  pntlemb  27089  padicabv  27122  ubthlem2  30111  iprodgam  34700  faclimlem1  34701  faclimlem3  34703  faclim  34704  iprodfac  34705  heicant  36511  ftc1anclem6  36554  heiborlem6  36672  2ap1caineq  40949  pell1qrgaplem  41596  pell14qrgapw  41599  wallispilem4  44770  stirlinglem1  44776  stirlinglem5  44780  fourierdlem30  44839
  Copyright terms: Public domain W3C validator