MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpaddcld Structured version   Visualization version   GIF version

Theorem rpaddcld 13085
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
rpaddcld.1 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
rpaddcld (𝜑 → (𝐴 + 𝐵) ∈ ℝ+)

Proof of Theorem rpaddcld
StepHypRef Expression
1 rpred.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpaddcld.1 . 2 (𝜑𝐵 ∈ ℝ+)
3 rpaddcl 13050 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)
41, 2, 3syl2anc 582 1 (𝜑 → (𝐴 + 𝐵) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  (class class class)co 7424   + caddc 11161  +crp 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-rp 13029
This theorem is referenced by:  xov1plusxeqvd  13529  01sqrexlem7  15253  rpcoshcl  16159  isosctrlem2  26847  lgamucov  27066  relgamcl  27090  2sqmod  27465  pntrlog2bndlem2  27607  pntrlog2bndlem3  27608  pntrlog2bndlem4  27609  pntibndlem3  27621  pntlema  27625  pntlemb  27626  padicabv  27659  ubthlem2  30804  iprodgam  35564  faclimlem1  35565  faclimlem3  35567  faclim  35568  iprodfac  35569  heicant  37356  ftc1anclem6  37399  heiborlem6  37517  2ap1caineq  41843  pell1qrgaplem  42530  pell14qrgapw  42533  wallispilem4  45689  stirlinglem1  45695  stirlinglem5  45699  fourierdlem30  45758
  Copyright terms: Public domain W3C validator