Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem3 Structured version   Visualization version   GIF version

Theorem faclimlem3 35722
Description: Lemma for faclim 35723. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))

Proof of Theorem faclimlem3
StepHypRef Expression
1 1rp 12897 . . . . . . . 8 1 ∈ ℝ+
21a1i 11 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℝ+)
3 nnrp 12905 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
43rpreccld 12947 . . . . . . . 8 (𝐵 ∈ ℕ → (1 / 𝐵) ∈ ℝ+)
54adantl 481 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 / 𝐵) ∈ ℝ+)
62, 5rpaddcld 12952 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℝ+)
76rpcnd 12939 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℂ)
8 simpl 482 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝑀 ∈ ℕ0)
97, 8expp1d 14054 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
101a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ → 1 ∈ ℝ+)
1110, 4rpaddcld 12952 . . . . . . . 8 (𝐵 ∈ ℕ → (1 + (1 / 𝐵)) ∈ ℝ+)
12 nn0z 12496 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
13 rpexpcl 13987 . . . . . . . 8 (((1 + (1 / 𝐵)) ∈ ℝ+𝑀 ∈ ℤ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1411, 12, 13syl2anr 597 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1514rpcnd 12939 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℂ)
16 1cnd 11110 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℂ)
17 nn0nndivcl 12456 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℝ)
1817recnd 11143 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℂ)
1916, 18addcomd 11318 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) = ((𝑀 / 𝐵) + 1))
20 nn0ge0div 12545 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 0 ≤ (𝑀 / 𝐵))
2117, 20ge0p1rpd 12967 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 / 𝐵) + 1) ∈ ℝ+)
2219, 21eqeltrd 2828 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℝ+)
2322rpcnd 12939 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℂ)
2422rpne0d 12942 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ≠ 0)
2515, 23, 24divcan1d 11901 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) = ((1 + (1 / 𝐵))↑𝑀))
2625oveq1d 7364 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
2714, 22rpdivcld 12954 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℝ+)
2827rpcnd 12939 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℂ)
2928, 23, 7mulassd 11138 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
309, 26, 293eqtr2d 2770 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
3130oveq1d 7364 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))))
3222, 6rpmulcld 12953 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℝ+)
3332rpcnd 12939 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℂ)
34 nn0p1nn 12423 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
3534nnrpd 12935 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℝ+)
3635adantr 480 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 + 1) ∈ ℝ+)
373adantl 481 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ+)
3836, 37rpdivcld 12954 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 + 1) / 𝐵) ∈ ℝ+)
392, 38rpaddcld 12952 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℝ+)
4039rpcnd 12939 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℂ)
4139rpne0d 12942 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ≠ 0)
4228, 33, 40, 41divassd 11935 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
4331, 42eqtrd 2764 1 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7349  1c1 11010   + caddc 11012   · cmul 11014   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  +crp 12893  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969
This theorem is referenced by:  faclim  35723
  Copyright terms: Public domain W3C validator