Proof of Theorem faclimlem3
Step | Hyp | Ref
| Expression |
1 | | 1rp 12663 |
. . . . . . . 8
⊢ 1 ∈
ℝ+ |
2 | 1 | a1i 11 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ 1 ∈ ℝ+) |
3 | | nnrp 12670 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ+) |
4 | 3 | rpreccld 12711 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ → (1 /
𝐵) ∈
ℝ+) |
5 | 4 | adantl 481 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 / 𝐵) ∈
ℝ+) |
6 | 2, 5 | rpaddcld 12716 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + (1 / 𝐵)) ∈
ℝ+) |
7 | 6 | rpcnd 12703 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + (1 / 𝐵)) ∈
ℂ) |
8 | | simpl 482 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ 𝑀 ∈
ℕ0) |
9 | 7, 8 | expp1d 13793 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((1 + (1 / 𝐵))↑(𝑀 + 1)) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵)))) |
10 | 1 | a1i 11 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 1 ∈
ℝ+) |
11 | 10, 4 | rpaddcld 12716 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ → (1 + (1 /
𝐵)) ∈
ℝ+) |
12 | | nn0z 12273 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
13 | | rpexpcl 13729 |
. . . . . . . 8
⊢ (((1 + (1
/ 𝐵)) ∈
ℝ+ ∧ 𝑀
∈ ℤ) → ((1 + (1 / 𝐵))↑𝑀) ∈
ℝ+) |
14 | 11, 12, 13 | syl2anr 596 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((1 + (1 / 𝐵))↑𝑀) ∈
ℝ+) |
15 | 14 | rpcnd 12703 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((1 + (1 / 𝐵))↑𝑀) ∈ ℂ) |
16 | | 1cnd 10901 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ 1 ∈ ℂ) |
17 | | nn0nndivcl 12234 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (𝑀 / 𝐵) ∈
ℝ) |
18 | 17 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (𝑀 / 𝐵) ∈
ℂ) |
19 | 16, 18 | addcomd 11107 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + (𝑀 / 𝐵)) = ((𝑀 / 𝐵) + 1)) |
20 | | nn0ge0div 12319 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ 0 ≤ (𝑀 / 𝐵)) |
21 | 17, 20 | ge0p1rpd 12731 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((𝑀 / 𝐵) + 1) ∈
ℝ+) |
22 | 19, 21 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + (𝑀 / 𝐵)) ∈
ℝ+) |
23 | 22 | rpcnd 12703 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + (𝑀 / 𝐵)) ∈
ℂ) |
24 | 22 | rpne0d 12706 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + (𝑀 / 𝐵)) ≠ 0) |
25 | 15, 23, 24 | divcan1d 11682 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) = ((1 + (1 / 𝐵))↑𝑀)) |
26 | 25 | oveq1d 7270 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵)))) |
27 | 14, 22 | rpdivcld 12718 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈
ℝ+) |
28 | 27 | rpcnd 12703 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℂ) |
29 | 28, 23, 7 | mulassd 10929 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))))) |
30 | 9, 26, 29 | 3eqtr2d 2784 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((1 + (1 / 𝐵))↑(𝑀 + 1)) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))))) |
31 | 30 | oveq1d 7270 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵)))) |
32 | 22, 6 | rpmulcld 12717 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈
ℝ+) |
33 | 32 | rpcnd 12703 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈
ℂ) |
34 | | nn0p1nn 12202 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ) |
35 | 34 | nnrpd 12699 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℝ+) |
36 | 35 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (𝑀 + 1) ∈
ℝ+) |
37 | 3 | adantl 481 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ 𝐵 ∈
ℝ+) |
38 | 36, 37 | rpdivcld 12718 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ ((𝑀 + 1) / 𝐵) ∈
ℝ+) |
39 | 2, 38 | rpaddcld 12716 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + ((𝑀 + 1) /
𝐵)) ∈
ℝ+) |
40 | 39 | rpcnd 12703 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + ((𝑀 + 1) /
𝐵)) ∈
ℂ) |
41 | 39 | rpne0d 12706 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (1 + ((𝑀 + 1) /
𝐵)) ≠
0) |
42 | 28, 33, 40, 41 | divassd 11716 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵))))) |
43 | 31, 42 | eqtrd 2778 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝐵 ∈ ℕ)
→ (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵))))) |