Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem3 Structured version   Visualization version   GIF version

Theorem faclimlem3 33617
Description: Lemma for faclim 33618. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))

Proof of Theorem faclimlem3
StepHypRef Expression
1 1rp 12663 . . . . . . . 8 1 ∈ ℝ+
21a1i 11 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℝ+)
3 nnrp 12670 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
43rpreccld 12711 . . . . . . . 8 (𝐵 ∈ ℕ → (1 / 𝐵) ∈ ℝ+)
54adantl 481 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 / 𝐵) ∈ ℝ+)
62, 5rpaddcld 12716 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℝ+)
76rpcnd 12703 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℂ)
8 simpl 482 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝑀 ∈ ℕ0)
97, 8expp1d 13793 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
101a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ → 1 ∈ ℝ+)
1110, 4rpaddcld 12716 . . . . . . . 8 (𝐵 ∈ ℕ → (1 + (1 / 𝐵)) ∈ ℝ+)
12 nn0z 12273 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
13 rpexpcl 13729 . . . . . . . 8 (((1 + (1 / 𝐵)) ∈ ℝ+𝑀 ∈ ℤ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1411, 12, 13syl2anr 596 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1514rpcnd 12703 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℂ)
16 1cnd 10901 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℂ)
17 nn0nndivcl 12234 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℝ)
1817recnd 10934 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℂ)
1916, 18addcomd 11107 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) = ((𝑀 / 𝐵) + 1))
20 nn0ge0div 12319 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 0 ≤ (𝑀 / 𝐵))
2117, 20ge0p1rpd 12731 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 / 𝐵) + 1) ∈ ℝ+)
2219, 21eqeltrd 2839 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℝ+)
2322rpcnd 12703 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℂ)
2422rpne0d 12706 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ≠ 0)
2515, 23, 24divcan1d 11682 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) = ((1 + (1 / 𝐵))↑𝑀))
2625oveq1d 7270 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
2714, 22rpdivcld 12718 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℝ+)
2827rpcnd 12703 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℂ)
2928, 23, 7mulassd 10929 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
309, 26, 293eqtr2d 2784 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
3130oveq1d 7270 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))))
3222, 6rpmulcld 12717 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℝ+)
3332rpcnd 12703 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℂ)
34 nn0p1nn 12202 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
3534nnrpd 12699 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℝ+)
3635adantr 480 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 + 1) ∈ ℝ+)
373adantl 481 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ+)
3836, 37rpdivcld 12718 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 + 1) / 𝐵) ∈ ℝ+)
392, 38rpaddcld 12716 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℝ+)
4039rpcnd 12703 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℂ)
4139rpne0d 12706 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ≠ 0)
4228, 33, 40, 41divassd 11716 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
4331, 42eqtrd 2778 1 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  (class class class)co 7255  1c1 10803   + caddc 10805   · cmul 10807   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711
This theorem is referenced by:  faclim  33618
  Copyright terms: Public domain W3C validator