Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem3 Structured version   Visualization version   GIF version

Theorem faclimlem3 33719
Description: Lemma for faclim 33720. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))

Proof of Theorem faclimlem3
StepHypRef Expression
1 1rp 12744 . . . . . . . 8 1 ∈ ℝ+
21a1i 11 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℝ+)
3 nnrp 12751 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
43rpreccld 12792 . . . . . . . 8 (𝐵 ∈ ℕ → (1 / 𝐵) ∈ ℝ+)
54adantl 482 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 / 𝐵) ∈ ℝ+)
62, 5rpaddcld 12797 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℝ+)
76rpcnd 12784 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℂ)
8 simpl 483 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝑀 ∈ ℕ0)
97, 8expp1d 13875 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
101a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ → 1 ∈ ℝ+)
1110, 4rpaddcld 12797 . . . . . . . 8 (𝐵 ∈ ℕ → (1 + (1 / 𝐵)) ∈ ℝ+)
12 nn0z 12353 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
13 rpexpcl 13811 . . . . . . . 8 (((1 + (1 / 𝐵)) ∈ ℝ+𝑀 ∈ ℤ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1411, 12, 13syl2anr 597 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1514rpcnd 12784 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℂ)
16 1cnd 10980 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℂ)
17 nn0nndivcl 12314 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℝ)
1817recnd 11013 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℂ)
1916, 18addcomd 11187 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) = ((𝑀 / 𝐵) + 1))
20 nn0ge0div 12399 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 0 ≤ (𝑀 / 𝐵))
2117, 20ge0p1rpd 12812 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 / 𝐵) + 1) ∈ ℝ+)
2219, 21eqeltrd 2839 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℝ+)
2322rpcnd 12784 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℂ)
2422rpne0d 12787 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ≠ 0)
2515, 23, 24divcan1d 11762 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) = ((1 + (1 / 𝐵))↑𝑀))
2625oveq1d 7282 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
2714, 22rpdivcld 12799 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℝ+)
2827rpcnd 12784 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℂ)
2928, 23, 7mulassd 11008 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
309, 26, 293eqtr2d 2784 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
3130oveq1d 7282 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))))
3222, 6rpmulcld 12798 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℝ+)
3332rpcnd 12784 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℂ)
34 nn0p1nn 12282 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
3534nnrpd 12780 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℝ+)
3635adantr 481 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 + 1) ∈ ℝ+)
373adantl 482 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ+)
3836, 37rpdivcld 12799 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 + 1) / 𝐵) ∈ ℝ+)
392, 38rpaddcld 12797 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℝ+)
4039rpcnd 12784 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℂ)
4139rpne0d 12787 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ≠ 0)
4228, 33, 40, 41divassd 11796 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
4331, 42eqtrd 2778 1 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  (class class class)co 7267  1c1 10882   + caddc 10884   · cmul 10886   / cdiv 11642  cn 11983  0cn0 12243  cz 12329  +crp 12740  cexp 13792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-n0 12244  df-z 12330  df-uz 12593  df-rp 12741  df-seq 13732  df-exp 13793
This theorem is referenced by:  faclim  33720
  Copyright terms: Public domain W3C validator