Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem3 Structured version   Visualization version   GIF version

Theorem faclimlem3 33090
Description: Lemma for faclim 33091. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))

Proof of Theorem faclimlem3
StepHypRef Expression
1 1rp 12381 . . . . . . . 8 1 ∈ ℝ+
21a1i 11 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℝ+)
3 nnrp 12388 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
43rpreccld 12429 . . . . . . . 8 (𝐵 ∈ ℕ → (1 / 𝐵) ∈ ℝ+)
54adantl 485 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 / 𝐵) ∈ ℝ+)
62, 5rpaddcld 12434 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℝ+)
76rpcnd 12421 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℂ)
8 simpl 486 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝑀 ∈ ℕ0)
97, 8expp1d 13507 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
101a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ → 1 ∈ ℝ+)
1110, 4rpaddcld 12434 . . . . . . . 8 (𝐵 ∈ ℕ → (1 + (1 / 𝐵)) ∈ ℝ+)
12 nn0z 11993 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
13 rpexpcl 13444 . . . . . . . 8 (((1 + (1 / 𝐵)) ∈ ℝ+𝑀 ∈ ℤ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1411, 12, 13syl2anr 599 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1514rpcnd 12421 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℂ)
16 1cnd 10625 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℂ)
17 nn0nndivcl 11954 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℝ)
1817recnd 10658 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℂ)
1916, 18addcomd 10831 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) = ((𝑀 / 𝐵) + 1))
20 nn0ge0div 12039 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 0 ≤ (𝑀 / 𝐵))
2117, 20ge0p1rpd 12449 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 / 𝐵) + 1) ∈ ℝ+)
2219, 21eqeltrd 2890 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℝ+)
2322rpcnd 12421 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℂ)
2422rpne0d 12424 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ≠ 0)
2515, 23, 24divcan1d 11406 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) = ((1 + (1 / 𝐵))↑𝑀))
2625oveq1d 7150 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
2714, 22rpdivcld 12436 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℝ+)
2827rpcnd 12421 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℂ)
2928, 23, 7mulassd 10653 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
309, 26, 293eqtr2d 2839 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
3130oveq1d 7150 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))))
3222, 6rpmulcld 12435 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℝ+)
3332rpcnd 12421 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℂ)
34 nn0p1nn 11924 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
3534nnrpd 12417 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℝ+)
3635adantr 484 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 + 1) ∈ ℝ+)
373adantl 485 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ+)
3836, 37rpdivcld 12436 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 + 1) / 𝐵) ∈ ℝ+)
392, 38rpaddcld 12434 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℝ+)
4039rpcnd 12421 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℂ)
4139rpne0d 12424 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ≠ 0)
4228, 33, 40, 41divassd 11440 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
4331, 42eqtrd 2833 1 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  (class class class)co 7135  1c1 10527   + caddc 10529   · cmul 10531   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  +crp 12377  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426
This theorem is referenced by:  faclim  33091
  Copyright terms: Public domain W3C validator