| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iprodfac | Structured version Visualization version GIF version | ||
| Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
| Ref | Expression |
|---|---|
| iprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12921 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12648 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 1 ∈ ℤ) | |
| 3 | facne0 14325 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) ≠ 0) | |
| 4 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) = (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) | |
| 5 | 4 | faclim 35746 | . . 3 ⊢ (𝐴 ∈ ℕ0 → seq1( · , (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))) ⇝ (!‘𝐴)) |
| 6 | oveq2 7439 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (1 / 𝑥) = (1 / 𝑘)) | |
| 7 | 6 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (1 + (1 / 𝑥)) = (1 + (1 / 𝑘))) |
| 8 | 7 | oveq1d 7446 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((1 + (1 / 𝑥))↑𝐴) = ((1 + (1 / 𝑘))↑𝐴)) |
| 9 | oveq2 7439 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘)) | |
| 10 | 9 | oveq2d 7447 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘))) |
| 11 | 8, 10 | oveq12d 7449 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| 12 | ovex 7464 | . . . . 5 ⊢ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ V | |
| 13 | 11, 4, 12 | fvmpt 7016 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| 15 | 1rp 13038 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ+) |
| 17 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 18 | 17 | nnrpd 13075 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
| 19 | 18 | rpreccld 13087 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+) |
| 20 | 16, 19 | rpaddcld 13092 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+) |
| 21 | nn0z 12638 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ) |
| 23 | 20, 22 | rpexpcld 14286 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝐴) ∈ ℝ+) |
| 24 | 1cnd 11256 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ) | |
| 25 | nn0nndivcl 12598 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ) | |
| 26 | 25 | recnd 11289 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ) |
| 27 | 24, 26 | addcomd 11463 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) = ((𝐴 / 𝑘) + 1)) |
| 28 | nn0ge0div 12687 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐴 / 𝑘)) | |
| 29 | 25, 28 | ge0p1rpd 13107 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℝ+) |
| 30 | 27, 29 | eqeltrd 2841 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) ∈ ℝ+) |
| 31 | 23, 30 | rpdivcld 13094 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℝ+) |
| 32 | 31 | rpcnd 13079 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℂ) |
| 33 | 1, 2, 3, 5, 14, 32 | iprodn0 15976 | . 2 ⊢ (𝐴 ∈ ℕ0 → ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) = (!‘𝐴)) |
| 34 | 33 | eqcomd 2743 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 1c1 11156 + caddc 11158 / cdiv 11920 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 ℝ+crp 13034 ↑cexp 14102 !cfa 14312 ∏cprod 15939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-fac 14313 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-rlim 15525 df-prod 15940 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |