![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iprodfac | Structured version Visualization version GIF version |
Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
iprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12806 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12534 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 1 ∈ ℤ) | |
3 | facne0 14186 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) ≠ 0) | |
4 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) = (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) | |
5 | 4 | faclim 34319 | . . 3 ⊢ (𝐴 ∈ ℕ0 → seq1( · , (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))) ⇝ (!‘𝐴)) |
6 | oveq2 7365 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (1 / 𝑥) = (1 / 𝑘)) | |
7 | 6 | oveq2d 7373 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (1 + (1 / 𝑥)) = (1 + (1 / 𝑘))) |
8 | 7 | oveq1d 7372 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((1 + (1 / 𝑥))↑𝐴) = ((1 + (1 / 𝑘))↑𝐴)) |
9 | oveq2 7365 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘)) | |
10 | 9 | oveq2d 7373 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘))) |
11 | 8, 10 | oveq12d 7375 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
12 | ovex 7390 | . . . . 5 ⊢ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ V | |
13 | 11, 4, 12 | fvmpt 6948 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
14 | 13 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
15 | 1rp 12919 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ+) |
17 | simpr 485 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
18 | 17 | nnrpd 12955 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
19 | 18 | rpreccld 12967 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+) |
20 | 16, 19 | rpaddcld 12972 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+) |
21 | nn0z 12524 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
22 | 21 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ) |
23 | 20, 22 | rpexpcld 14150 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝐴) ∈ ℝ+) |
24 | 1cnd 11150 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ) | |
25 | nn0nndivcl 12484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ) | |
26 | 25 | recnd 11183 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ) |
27 | 24, 26 | addcomd 11357 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) = ((𝐴 / 𝑘) + 1)) |
28 | nn0ge0div 12572 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐴 / 𝑘)) | |
29 | 25, 28 | ge0p1rpd 12987 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℝ+) |
30 | 27, 29 | eqeltrd 2838 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) ∈ ℝ+) |
31 | 23, 30 | rpdivcld 12974 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℝ+) |
32 | 31 | rpcnd 12959 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℂ) |
33 | 1, 2, 3, 5, 14, 32 | iprodn0 15823 | . 2 ⊢ (𝐴 ∈ ℕ0 → ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) = (!‘𝐴)) |
34 | 33 | eqcomd 2742 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 1c1 11052 + caddc 11054 / cdiv 11812 ℕcn 12153 ℕ0cn0 12413 ℤcz 12499 ℝ+crp 12915 ↑cexp 13967 !cfa 14173 ∏cprod 15788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-fl 13697 df-seq 13907 df-exp 13968 df-fac 14174 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-rlim 15371 df-prod 15789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |