![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iprodfac | Structured version Visualization version GIF version |
Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
iprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12903 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12631 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 1 ∈ ℤ) | |
3 | facne0 14286 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) ≠ 0) | |
4 | eqid 2725 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) = (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) | |
5 | 4 | faclim 35473 | . . 3 ⊢ (𝐴 ∈ ℕ0 → seq1( · , (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))) ⇝ (!‘𝐴)) |
6 | oveq2 7427 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (1 / 𝑥) = (1 / 𝑘)) | |
7 | 6 | oveq2d 7435 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (1 + (1 / 𝑥)) = (1 + (1 / 𝑘))) |
8 | 7 | oveq1d 7434 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((1 + (1 / 𝑥))↑𝐴) = ((1 + (1 / 𝑘))↑𝐴)) |
9 | oveq2 7427 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘)) | |
10 | 9 | oveq2d 7435 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘))) |
11 | 8, 10 | oveq12d 7437 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
12 | ovex 7452 | . . . . 5 ⊢ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ V | |
13 | 11, 4, 12 | fvmpt 7004 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
14 | 13 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
15 | 1rp 13018 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ+) |
17 | simpr 483 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
18 | 17 | nnrpd 13054 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
19 | 18 | rpreccld 13066 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+) |
20 | 16, 19 | rpaddcld 13071 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+) |
21 | nn0z 12621 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
22 | 21 | adantr 479 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ) |
23 | 20, 22 | rpexpcld 14250 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝐴) ∈ ℝ+) |
24 | 1cnd 11246 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ) | |
25 | nn0nndivcl 12581 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ) | |
26 | 25 | recnd 11279 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ) |
27 | 24, 26 | addcomd 11453 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) = ((𝐴 / 𝑘) + 1)) |
28 | nn0ge0div 12669 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐴 / 𝑘)) | |
29 | 25, 28 | ge0p1rpd 13086 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℝ+) |
30 | 27, 29 | eqeltrd 2825 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) ∈ ℝ+) |
31 | 23, 30 | rpdivcld 13073 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℝ+) |
32 | 31 | rpcnd 13058 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℂ) |
33 | 1, 2, 3, 5, 14, 32 | iprodn0 15925 | . 2 ⊢ (𝐴 ∈ ℕ0 → ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) = (!‘𝐴)) |
34 | 33 | eqcomd 2731 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 1c1 11146 + caddc 11148 / cdiv 11908 ℕcn 12250 ℕ0cn0 12510 ℤcz 12596 ℝ+crp 13014 ↑cexp 14067 !cfa 14273 ∏cprod 15890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9472 df-inf 9473 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-fl 13798 df-seq 14008 df-exp 14068 df-fac 14274 df-hash 14331 df-shft 15055 df-cj 15087 df-re 15088 df-im 15089 df-sqrt 15223 df-abs 15224 df-clim 15473 df-rlim 15474 df-prod 15891 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |