Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iprodfac | Structured version Visualization version GIF version |
Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
iprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12550 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12281 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 1 ∈ ℤ) | |
3 | facne0 13928 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) ≠ 0) | |
4 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) = (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) | |
5 | 4 | faclim 33618 | . . 3 ⊢ (𝐴 ∈ ℕ0 → seq1( · , (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))) ⇝ (!‘𝐴)) |
6 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (1 / 𝑥) = (1 / 𝑘)) | |
7 | 6 | oveq2d 7271 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (1 + (1 / 𝑥)) = (1 + (1 / 𝑘))) |
8 | 7 | oveq1d 7270 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((1 + (1 / 𝑥))↑𝐴) = ((1 + (1 / 𝑘))↑𝐴)) |
9 | oveq2 7263 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘)) | |
10 | 9 | oveq2d 7271 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘))) |
11 | 8, 10 | oveq12d 7273 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
12 | ovex 7288 | . . . . 5 ⊢ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ V | |
13 | 11, 4, 12 | fvmpt 6857 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
15 | 1rp 12663 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ+) |
17 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
18 | 17 | nnrpd 12699 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
19 | 18 | rpreccld 12711 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+) |
20 | 16, 19 | rpaddcld 12716 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+) |
21 | nn0z 12273 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ) |
23 | 20, 22 | rpexpcld 13890 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝐴) ∈ ℝ+) |
24 | 1cnd 10901 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ) | |
25 | nn0nndivcl 12234 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ) | |
26 | 25 | recnd 10934 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ) |
27 | 24, 26 | addcomd 11107 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) = ((𝐴 / 𝑘) + 1)) |
28 | nn0ge0div 12319 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐴 / 𝑘)) | |
29 | 25, 28 | ge0p1rpd 12731 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℝ+) |
30 | 27, 29 | eqeltrd 2839 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) ∈ ℝ+) |
31 | 23, 30 | rpdivcld 12718 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℝ+) |
32 | 31 | rpcnd 12703 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℂ) |
33 | 1, 2, 3, 5, 14, 32 | iprodn0 15578 | . 2 ⊢ (𝐴 ∈ ℕ0 → ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) = (!‘𝐴)) |
34 | 33 | eqcomd 2744 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ℝ+crp 12659 ↑cexp 13710 !cfa 13915 ∏cprod 15543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-fac 13916 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-prod 15544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |