| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iprodfac | Structured version Visualization version GIF version | ||
| Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
| Ref | Expression |
|---|---|
| iprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12836 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12564 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 1 ∈ ℤ) | |
| 3 | facne0 14251 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) ≠ 0) | |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) = (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) | |
| 5 | 4 | faclim 35733 | . . 3 ⊢ (𝐴 ∈ ℕ0 → seq1( · , (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))) ⇝ (!‘𝐴)) |
| 6 | oveq2 7395 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (1 / 𝑥) = (1 / 𝑘)) | |
| 7 | 6 | oveq2d 7403 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (1 + (1 / 𝑥)) = (1 + (1 / 𝑘))) |
| 8 | 7 | oveq1d 7402 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((1 + (1 / 𝑥))↑𝐴) = ((1 + (1 / 𝑘))↑𝐴)) |
| 9 | oveq2 7395 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘)) | |
| 10 | 9 | oveq2d 7403 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘))) |
| 11 | 8, 10 | oveq12d 7405 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| 12 | ovex 7420 | . . . . 5 ⊢ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ V | |
| 13 | 11, 4, 12 | fvmpt 6968 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| 15 | 1rp 12955 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ+) |
| 17 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 18 | 17 | nnrpd 12993 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
| 19 | 18 | rpreccld 13005 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+) |
| 20 | 16, 19 | rpaddcld 13010 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+) |
| 21 | nn0z 12554 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ) |
| 23 | 20, 22 | rpexpcld 14212 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝐴) ∈ ℝ+) |
| 24 | 1cnd 11169 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ) | |
| 25 | nn0nndivcl 12514 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ) | |
| 26 | 25 | recnd 11202 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ) |
| 27 | 24, 26 | addcomd 11376 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) = ((𝐴 / 𝑘) + 1)) |
| 28 | nn0ge0div 12603 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐴 / 𝑘)) | |
| 29 | 25, 28 | ge0p1rpd 13025 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℝ+) |
| 30 | 27, 29 | eqeltrd 2828 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) ∈ ℝ+) |
| 31 | 23, 30 | rpdivcld 13012 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℝ+) |
| 32 | 31 | rpcnd 12997 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℂ) |
| 33 | 1, 2, 3, 5, 14, 32 | iprodn0 15906 | . 2 ⊢ (𝐴 ∈ ℕ0 → ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) = (!‘𝐴)) |
| 34 | 33 | eqcomd 2735 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 1c1 11069 + caddc 11071 / cdiv 11835 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ℝ+crp 12951 ↑cexp 14026 !cfa 14238 ∏cprod 15869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-fac 14239 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-prod 15870 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |