Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodfac Structured version   Visualization version   GIF version

Theorem iprodfac 35685
Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
iprodfac (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem iprodfac
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12887 . . 3 ℕ = (ℤ‘1)
2 1zzd 12615 . . 3 (𝐴 ∈ ℕ0 → 1 ∈ ℤ)
3 facne0 14292 . . 3 (𝐴 ∈ ℕ0 → (!‘𝐴) ≠ 0)
4 eqid 2734 . . . 4 (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) = (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))
54faclim 35684 . . 3 (𝐴 ∈ ℕ0 → seq1( · , (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))) ⇝ (!‘𝐴))
6 oveq2 7407 . . . . . . . 8 (𝑥 = 𝑘 → (1 / 𝑥) = (1 / 𝑘))
76oveq2d 7415 . . . . . . 7 (𝑥 = 𝑘 → (1 + (1 / 𝑥)) = (1 + (1 / 𝑘)))
87oveq1d 7414 . . . . . 6 (𝑥 = 𝑘 → ((1 + (1 / 𝑥))↑𝐴) = ((1 + (1 / 𝑘))↑𝐴))
9 oveq2 7407 . . . . . . 7 (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘))
109oveq2d 7415 . . . . . 6 (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘)))
118, 10oveq12d 7417 . . . . 5 (𝑥 = 𝑘 → (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
12 ovex 7432 . . . . 5 (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ V
1311, 4, 12fvmpt 6982 . . . 4 (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
1413adantl 481 . . 3 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
15 1rp 13004 . . . . . . . 8 1 ∈ ℝ+
1615a1i 11 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℝ+)
17 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1817nnrpd 13041 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
1918rpreccld 13053 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
2016, 19rpaddcld 13058 . . . . . 6 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
21 nn0z 12605 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2221adantr 480 . . . . . 6 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
2320, 22rpexpcld 14253 . . . . 5 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝐴) ∈ ℝ+)
24 1cnd 11222 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℂ)
25 nn0nndivcl 12565 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ)
2625recnd 11255 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
2724, 26addcomd 11429 . . . . . 6 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) = ((𝐴 / 𝑘) + 1))
28 nn0ge0div 12654 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 0 ≤ (𝐴 / 𝑘))
2925, 28ge0p1rpd 13073 . . . . . 6 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℝ+)
3027, 29eqeltrd 2833 . . . . 5 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) ∈ ℝ+)
3123, 30rpdivcld 13060 . . . 4 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℝ+)
3231rpcnd 13045 . . 3 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℂ)
331, 2, 3, 5, 14, 32iprodn0 15943 . 2 (𝐴 ∈ ℕ0 → ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) = (!‘𝐴))
3433eqcomd 2740 1 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cmpt 5198  cfv 6527  (class class class)co 7399  1c1 11122   + caddc 11124   / cdiv 11886  cn 12232  0cn0 12493  cz 12580  +crp 13000  cexp 14068  !cfa 14279  cprod 15906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-inf2 9647  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-inf 9449  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-fz 13514  df-fzo 13661  df-fl 13798  df-seq 14009  df-exp 14069  df-fac 14280  df-hash 14337  df-shft 15073  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-clim 15491  df-rlim 15492  df-prod 15907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator