Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pntlema | Structured version Visualization version GIF version |
Description: Lemma for pnt 26743. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
pntlem1.y | ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
pntlem1.x | ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
pntlem1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
pntlem1.w | ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
Ref | Expression |
---|---|
pntlema | ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.w | . 2 ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) | |
2 | pntlem1.y | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) | |
3 | 2 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ+) |
4 | 4nn 12039 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
5 | nnrp 12723 | . . . . . . 7 ⊢ (4 ∈ ℕ → 4 ∈ ℝ+) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 4 ∈ ℝ+ |
7 | pntlem1.r | . . . . . . . . 9 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
8 | pntlem1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
9 | pntlem1.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
10 | pntlem1.l | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
11 | pntlem1.d | . . . . . . . . 9 ⊢ 𝐷 = (𝐴 + 1) | |
12 | pntlem1.f | . . . . . . . . 9 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
13 | 7, 8, 9, 10, 11, 12 | pntlemd 26723 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
14 | 13 | simp1d 1140 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
15 | pntlem1.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
16 | pntlem1.u2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
17 | pntlem1.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑈 / 𝐷) | |
18 | pntlem1.k | . . . . . . . . 9 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
19 | 7, 8, 9, 10, 11, 12, 15, 16, 17, 18 | pntlemc 26724 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
20 | 19 | simp1d 1140 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
21 | 14, 20 | rpmulcld 12770 | . . . . . 6 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ+) |
22 | rpdivcl 12737 | . . . . . 6 ⊢ ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+) | |
23 | 6, 21, 22 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+) |
24 | 3, 23 | rpaddcld 12769 | . . . 4 ⊢ (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+) |
25 | 2z 12335 | . . . 4 ⊢ 2 ∈ ℤ | |
26 | rpexpcl 13782 | . . . 4 ⊢ (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) | |
27 | 24, 25, 26 | sylancl 585 | . . 3 ⊢ (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) |
28 | pntlem1.x | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) | |
29 | 28 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
30 | 19 | simp2d 1141 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
31 | rpexpcl 13782 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+) | |
32 | 30, 25, 31 | sylancl 585 | . . . . . 6 ⊢ (𝜑 → (𝐾↑2) ∈ ℝ+) |
33 | 29, 32 | rpmulcld 12770 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+) |
34 | 4z 12337 | . . . . 5 ⊢ 4 ∈ ℤ | |
35 | rpexpcl 13782 | . . . . 5 ⊢ (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) | |
36 | 33, 34, 35 | sylancl 585 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) |
37 | 3nn0 12234 | . . . . . . . . . . 11 ⊢ 3 ∈ ℕ0 | |
38 | 2nn 12029 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
39 | 37, 38 | decnncl 12439 | . . . . . . . . . 10 ⊢ ;32 ∈ ℕ |
40 | nnrp 12723 | . . . . . . . . . 10 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . . 9 ⊢ ;32 ∈ ℝ+ |
42 | rpmulcl 12735 | . . . . . . . . 9 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
43 | 41, 9, 42 | sylancr 586 | . . . . . . . 8 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
44 | 19 | simp3d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
45 | 44 | simp3d 1142 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
46 | rpexpcl 13782 | . . . . . . . . . . 11 ⊢ ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+) | |
47 | 20, 25, 46 | sylancl 585 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸↑2) ∈ ℝ+) |
48 | 14, 47 | rpmulcld 12770 | . . . . . . . . 9 ⊢ (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+) |
49 | 45, 48 | rpmulcld 12770 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+) |
50 | 43, 49 | rpdivcld 12771 | . . . . . . 7 ⊢ (𝜑 → ((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+) |
51 | 3rp 12718 | . . . . . . . . 9 ⊢ 3 ∈ ℝ+ | |
52 | rpmulcl 12735 | . . . . . . . . 9 ⊢ ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+) | |
53 | 15, 51, 52 | sylancl 585 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 · 3) ∈ ℝ+) |
54 | pntlem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
55 | 53, 54 | rpaddcld 12769 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+) |
56 | 50, 55 | rpmulcld 12770 | . . . . . 6 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+) |
57 | 56 | rpred 12754 | . . . . 5 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ) |
58 | 57 | rpefcld 15795 | . . . 4 ⊢ (𝜑 → (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+) |
59 | 36, 58 | rpaddcld 12769 | . . 3 ⊢ (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+) |
60 | 27, 59 | rpaddcld 12769 | . 2 ⊢ (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+) |
61 | 1, 60 | eqeltrid 2844 | 1 ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 < clt 10993 ≤ cle 10994 − cmin 11188 / cdiv 11615 ℕcn 11956 2c2 12011 3c3 12012 4c4 12013 ℤcz 12302 ;cdc 12419 ℝ+crp 12712 (,)cioo 13061 ↑cexp 13763 expce 15752 ψcchp 26223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-rp 12713 df-ioo 13065 df-ico 13067 df-fz 13222 df-fzo 13365 df-fl 13493 df-seq 13703 df-exp 13764 df-fac 13969 df-bc 13998 df-hash 14026 df-shft 14759 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-limsup 15161 df-clim 15178 df-rlim 15179 df-sum 15379 df-ef 15758 |
This theorem is referenced by: pntlemb 26726 pntleme 26737 |
Copyright terms: Public domain | W3C validator |