MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlema Structured version   Visualization version   GIF version

Theorem pntlema 26178
Description: Lemma for pnt 26196. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
Assertion
Ref Expression
pntlema (𝜑𝑊 ∈ ℝ+)
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)

Proof of Theorem pntlema
StepHypRef Expression
1 pntlem1.w . 2 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
2 pntlem1.y . . . . . 6 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
32simpld 498 . . . . 5 (𝜑𝑌 ∈ ℝ+)
4 4nn 11715 . . . . . . 7 4 ∈ ℕ
5 nnrp 12395 . . . . . . 7 (4 ∈ ℕ → 4 ∈ ℝ+)
64, 5ax-mp 5 . . . . . 6 4 ∈ ℝ+
7 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
8 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
9 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
10 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
11 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
12 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
137, 8, 9, 10, 11, 12pntlemd 26176 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1413simp1d 1139 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
15 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
16 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
17 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
18 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
197, 8, 9, 10, 11, 12, 15, 16, 17, 18pntlemc 26177 . . . . . . . 8 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2019simp1d 1139 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2114, 20rpmulcld 12442 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
22 rpdivcl 12409 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
236, 21, 22sylancr 590 . . . . 5 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
243, 23rpaddcld 12441 . . . 4 (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+)
25 2z 12009 . . . 4 2 ∈ ℤ
26 rpexpcl 13451 . . . 4 (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
2724, 25, 26sylancl 589 . . 3 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
28 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
2928simpld 498 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
3019simp2d 1140 . . . . . . 7 (𝜑𝐾 ∈ ℝ+)
31 rpexpcl 13451 . . . . . . 7 ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+)
3230, 25, 31sylancl 589 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℝ+)
3329, 32rpmulcld 12442 . . . . 5 (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+)
34 4z 12011 . . . . 5 4 ∈ ℤ
35 rpexpcl 13451 . . . . 5 (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
3633, 34, 35sylancl 589 . . . 4 (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
37 3nn0 11910 . . . . . . . . . . 11 3 ∈ ℕ0
38 2nn 11705 . . . . . . . . . . 11 2 ∈ ℕ
3937, 38decnncl 12113 . . . . . . . . . 10 32 ∈ ℕ
40 nnrp 12395 . . . . . . . . . 10 (32 ∈ ℕ → 32 ∈ ℝ+)
4139, 40ax-mp 5 . . . . . . . . 9 32 ∈ ℝ+
42 rpmulcl 12407 . . . . . . . . 9 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
4341, 9, 42sylancr 590 . . . . . . . 8 (𝜑 → (32 · 𝐵) ∈ ℝ+)
4419simp3d 1141 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
4544simp3d 1141 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
46 rpexpcl 13451 . . . . . . . . . . 11 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4720, 25, 46sylancl 589 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℝ+)
4814, 47rpmulcld 12442 . . . . . . . . 9 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
4945, 48rpmulcld 12442 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+)
5043, 49rpdivcld 12443 . . . . . . 7 (𝜑 → ((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+)
51 3rp 12390 . . . . . . . . 9 3 ∈ ℝ+
52 rpmulcl 12407 . . . . . . . . 9 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+)
5315, 51, 52sylancl 589 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ+)
54 pntlem1.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
5553, 54rpaddcld 12441 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+)
5650, 55rpmulcld 12442 . . . . . 6 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+)
5756rpred 12426 . . . . 5 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ)
5857rpefcld 15456 . . . 4 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+)
5936, 58rpaddcld 12441 . . 3 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+)
6027, 59rpaddcld 12441 . 2 (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+)
611, 60eqeltrid 2920 1 (𝜑𝑊 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5053  cmpt 5133  cfv 6344  (class class class)co 7146  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  2c2 11687  3c3 11688  4c4 11689  cz 11976  cdc 12093  +crp 12384  (,)cioo 12733  cexp 13432  expce 15413  ψcchp 25676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-rp 12385  df-ioo 12737  df-ico 12739  df-fz 12893  df-fzo 13036  df-fl 13164  df-seq 13372  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14424  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-limsup 14826  df-clim 14843  df-rlim 14844  df-sum 15041  df-ef 15419
This theorem is referenced by:  pntlemb  26179  pntleme  26190
  Copyright terms: Public domain W3C validator