Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pntlema | Structured version Visualization version GIF version |
Description: Lemma for pnt 26762. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
pntlem1.y | ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
pntlem1.x | ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
pntlem1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
pntlem1.w | ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
Ref | Expression |
---|---|
pntlema | ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.w | . 2 ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) | |
2 | pntlem1.y | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) | |
3 | 2 | simpld 495 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ+) |
4 | 4nn 12056 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
5 | nnrp 12741 | . . . . . . 7 ⊢ (4 ∈ ℕ → 4 ∈ ℝ+) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 4 ∈ ℝ+ |
7 | pntlem1.r | . . . . . . . . 9 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
8 | pntlem1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
9 | pntlem1.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
10 | pntlem1.l | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
11 | pntlem1.d | . . . . . . . . 9 ⊢ 𝐷 = (𝐴 + 1) | |
12 | pntlem1.f | . . . . . . . . 9 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
13 | 7, 8, 9, 10, 11, 12 | pntlemd 26742 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
14 | 13 | simp1d 1141 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
15 | pntlem1.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
16 | pntlem1.u2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
17 | pntlem1.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑈 / 𝐷) | |
18 | pntlem1.k | . . . . . . . . 9 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
19 | 7, 8, 9, 10, 11, 12, 15, 16, 17, 18 | pntlemc 26743 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
20 | 19 | simp1d 1141 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
21 | 14, 20 | rpmulcld 12788 | . . . . . 6 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ+) |
22 | rpdivcl 12755 | . . . . . 6 ⊢ ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+) | |
23 | 6, 21, 22 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+) |
24 | 3, 23 | rpaddcld 12787 | . . . 4 ⊢ (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+) |
25 | 2z 12352 | . . . 4 ⊢ 2 ∈ ℤ | |
26 | rpexpcl 13801 | . . . 4 ⊢ (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) | |
27 | 24, 25, 26 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) |
28 | pntlem1.x | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) | |
29 | 28 | simpld 495 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
30 | 19 | simp2d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
31 | rpexpcl 13801 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+) | |
32 | 30, 25, 31 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐾↑2) ∈ ℝ+) |
33 | 29, 32 | rpmulcld 12788 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+) |
34 | 4z 12354 | . . . . 5 ⊢ 4 ∈ ℤ | |
35 | rpexpcl 13801 | . . . . 5 ⊢ (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) | |
36 | 33, 34, 35 | sylancl 586 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) |
37 | 3nn0 12251 | . . . . . . . . . . 11 ⊢ 3 ∈ ℕ0 | |
38 | 2nn 12046 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
39 | 37, 38 | decnncl 12457 | . . . . . . . . . 10 ⊢ ;32 ∈ ℕ |
40 | nnrp 12741 | . . . . . . . . . 10 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . . 9 ⊢ ;32 ∈ ℝ+ |
42 | rpmulcl 12753 | . . . . . . . . 9 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
43 | 41, 9, 42 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
44 | 19 | simp3d 1143 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
45 | 44 | simp3d 1143 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
46 | rpexpcl 13801 | . . . . . . . . . . 11 ⊢ ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+) | |
47 | 20, 25, 46 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸↑2) ∈ ℝ+) |
48 | 14, 47 | rpmulcld 12788 | . . . . . . . . 9 ⊢ (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+) |
49 | 45, 48 | rpmulcld 12788 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+) |
50 | 43, 49 | rpdivcld 12789 | . . . . . . 7 ⊢ (𝜑 → ((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+) |
51 | 3rp 12736 | . . . . . . . . 9 ⊢ 3 ∈ ℝ+ | |
52 | rpmulcl 12753 | . . . . . . . . 9 ⊢ ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+) | |
53 | 15, 51, 52 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 · 3) ∈ ℝ+) |
54 | pntlem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
55 | 53, 54 | rpaddcld 12787 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+) |
56 | 50, 55 | rpmulcld 12788 | . . . . . 6 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+) |
57 | 56 | rpred 12772 | . . . . 5 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ) |
58 | 57 | rpefcld 15814 | . . . 4 ⊢ (𝜑 → (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+) |
59 | 36, 58 | rpaddcld 12787 | . . 3 ⊢ (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+) |
60 | 27, 59 | rpaddcld 12787 | . 2 ⊢ (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+) |
61 | 1, 60 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 3c3 12029 4c4 12030 ℤcz 12319 ;cdc 12437 ℝ+crp 12730 (,)cioo 13079 ↑cexp 13782 expce 15771 ψcchp 26242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-ioo 13083 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 |
This theorem is referenced by: pntlemb 26745 pntleme 26756 |
Copyright terms: Public domain | W3C validator |