| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlema | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27532. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
| pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| pntlem1.y | ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
| pntlem1.x | ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
| pntlem1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| pntlem1.w | ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
| Ref | Expression |
|---|---|
| pntlema | ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntlem1.w | . 2 ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) | |
| 2 | pntlem1.y | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) | |
| 3 | 2 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ+) |
| 4 | 4nn 12276 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 5 | nnrp 12970 | . . . . . . 7 ⊢ (4 ∈ ℕ → 4 ∈ ℝ+) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 4 ∈ ℝ+ |
| 7 | pntlem1.r | . . . . . . . . 9 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 8 | pntlem1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 9 | pntlem1.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 10 | pntlem1.l | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 11 | pntlem1.d | . . . . . . . . 9 ⊢ 𝐷 = (𝐴 + 1) | |
| 12 | pntlem1.f | . . . . . . . . 9 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 13 | 7, 8, 9, 10, 11, 12 | pntlemd 27512 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| 14 | 13 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
| 15 | pntlem1.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
| 16 | pntlem1.u2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
| 17 | pntlem1.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑈 / 𝐷) | |
| 18 | pntlem1.k | . . . . . . . . 9 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
| 19 | 7, 8, 9, 10, 11, 12, 15, 16, 17, 18 | pntlemc 27513 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| 20 | 19 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| 21 | 14, 20 | rpmulcld 13018 | . . . . . 6 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ+) |
| 22 | rpdivcl 12985 | . . . . . 6 ⊢ ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+) | |
| 23 | 6, 21, 22 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+) |
| 24 | 3, 23 | rpaddcld 13017 | . . . 4 ⊢ (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+) |
| 25 | 2z 12572 | . . . 4 ⊢ 2 ∈ ℤ | |
| 26 | rpexpcl 14052 | . . . 4 ⊢ (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) | |
| 27 | 24, 25, 26 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) |
| 28 | pntlem1.x | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) | |
| 29 | 28 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| 30 | 19 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
| 31 | rpexpcl 14052 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+) | |
| 32 | 30, 25, 31 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐾↑2) ∈ ℝ+) |
| 33 | 29, 32 | rpmulcld 13018 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+) |
| 34 | 4z 12574 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 35 | rpexpcl 14052 | . . . . 5 ⊢ (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) | |
| 36 | 33, 34, 35 | sylancl 586 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) |
| 37 | 3nn0 12467 | . . . . . . . . . . 11 ⊢ 3 ∈ ℕ0 | |
| 38 | 2nn 12266 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
| 39 | 37, 38 | decnncl 12676 | . . . . . . . . . 10 ⊢ ;32 ∈ ℕ |
| 40 | nnrp 12970 | . . . . . . . . . 10 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
| 41 | 39, 40 | ax-mp 5 | . . . . . . . . 9 ⊢ ;32 ∈ ℝ+ |
| 42 | rpmulcl 12983 | . . . . . . . . 9 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
| 43 | 41, 9, 42 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
| 44 | 19 | simp3d 1144 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
| 45 | 44 | simp3d 1144 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
| 46 | rpexpcl 14052 | . . . . . . . . . . 11 ⊢ ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+) | |
| 47 | 20, 25, 46 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸↑2) ∈ ℝ+) |
| 48 | 14, 47 | rpmulcld 13018 | . . . . . . . . 9 ⊢ (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+) |
| 49 | 45, 48 | rpmulcld 13018 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+) |
| 50 | 43, 49 | rpdivcld 13019 | . . . . . . 7 ⊢ (𝜑 → ((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+) |
| 51 | 3rp 12964 | . . . . . . . . 9 ⊢ 3 ∈ ℝ+ | |
| 52 | rpmulcl 12983 | . . . . . . . . 9 ⊢ ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+) | |
| 53 | 15, 51, 52 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 · 3) ∈ ℝ+) |
| 54 | pntlem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 55 | 53, 54 | rpaddcld 13017 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+) |
| 56 | 50, 55 | rpmulcld 13018 | . . . . . 6 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+) |
| 57 | 56 | rpred 13002 | . . . . 5 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ) |
| 58 | 57 | rpefcld 16080 | . . . 4 ⊢ (𝜑 → (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+) |
| 59 | 36, 58 | rpaddcld 13017 | . . 3 ⊢ (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+) |
| 60 | 27, 59 | rpaddcld 13017 | . 2 ⊢ (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+) |
| 61 | 1, 60 | eqeltrid 2833 | 1 ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℕcn 12193 2c2 12248 3c3 12249 4c4 12250 ℤcz 12536 ;cdc 12656 ℝ+crp 12958 (,)cioo 13313 ↑cexp 14033 expce 16034 ψcchp 27010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-ioo 13317 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 |
| This theorem is referenced by: pntlemb 27515 pntleme 27526 |
| Copyright terms: Public domain | W3C validator |