| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlema | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27577. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
| pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| pntlem1.y | ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
| pntlem1.x | ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
| pntlem1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| pntlem1.w | ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
| Ref | Expression |
|---|---|
| pntlema | ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntlem1.w | . 2 ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) | |
| 2 | pntlem1.y | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) | |
| 3 | 2 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ+) |
| 4 | 4nn 12323 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 5 | nnrp 13020 | . . . . . . 7 ⊢ (4 ∈ ℕ → 4 ∈ ℝ+) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 4 ∈ ℝ+ |
| 7 | pntlem1.r | . . . . . . . . 9 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 8 | pntlem1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 9 | pntlem1.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 10 | pntlem1.l | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 11 | pntlem1.d | . . . . . . . . 9 ⊢ 𝐷 = (𝐴 + 1) | |
| 12 | pntlem1.f | . . . . . . . . 9 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 13 | 7, 8, 9, 10, 11, 12 | pntlemd 27557 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| 14 | 13 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
| 15 | pntlem1.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
| 16 | pntlem1.u2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
| 17 | pntlem1.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑈 / 𝐷) | |
| 18 | pntlem1.k | . . . . . . . . 9 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
| 19 | 7, 8, 9, 10, 11, 12, 15, 16, 17, 18 | pntlemc 27558 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| 20 | 19 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| 21 | 14, 20 | rpmulcld 13067 | . . . . . 6 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ+) |
| 22 | rpdivcl 13034 | . . . . . 6 ⊢ ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+) | |
| 23 | 6, 21, 22 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+) |
| 24 | 3, 23 | rpaddcld 13066 | . . . 4 ⊢ (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+) |
| 25 | 2z 12624 | . . . 4 ⊢ 2 ∈ ℤ | |
| 26 | rpexpcl 14098 | . . . 4 ⊢ (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) | |
| 27 | 24, 25, 26 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) |
| 28 | pntlem1.x | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) | |
| 29 | 28 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| 30 | 19 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
| 31 | rpexpcl 14098 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+) | |
| 32 | 30, 25, 31 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐾↑2) ∈ ℝ+) |
| 33 | 29, 32 | rpmulcld 13067 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+) |
| 34 | 4z 12626 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 35 | rpexpcl 14098 | . . . . 5 ⊢ (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) | |
| 36 | 33, 34, 35 | sylancl 586 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) |
| 37 | 3nn0 12519 | . . . . . . . . . . 11 ⊢ 3 ∈ ℕ0 | |
| 38 | 2nn 12313 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
| 39 | 37, 38 | decnncl 12728 | . . . . . . . . . 10 ⊢ ;32 ∈ ℕ |
| 40 | nnrp 13020 | . . . . . . . . . 10 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
| 41 | 39, 40 | ax-mp 5 | . . . . . . . . 9 ⊢ ;32 ∈ ℝ+ |
| 42 | rpmulcl 13032 | . . . . . . . . 9 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
| 43 | 41, 9, 42 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
| 44 | 19 | simp3d 1144 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
| 45 | 44 | simp3d 1144 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
| 46 | rpexpcl 14098 | . . . . . . . . . . 11 ⊢ ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+) | |
| 47 | 20, 25, 46 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸↑2) ∈ ℝ+) |
| 48 | 14, 47 | rpmulcld 13067 | . . . . . . . . 9 ⊢ (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+) |
| 49 | 45, 48 | rpmulcld 13067 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+) |
| 50 | 43, 49 | rpdivcld 13068 | . . . . . . 7 ⊢ (𝜑 → ((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+) |
| 51 | 3rp 13014 | . . . . . . . . 9 ⊢ 3 ∈ ℝ+ | |
| 52 | rpmulcl 13032 | . . . . . . . . 9 ⊢ ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+) | |
| 53 | 15, 51, 52 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 · 3) ∈ ℝ+) |
| 54 | pntlem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 55 | 53, 54 | rpaddcld 13066 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+) |
| 56 | 50, 55 | rpmulcld 13067 | . . . . . 6 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+) |
| 57 | 56 | rpred 13051 | . . . . 5 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ) |
| 58 | 57 | rpefcld 16123 | . . . 4 ⊢ (𝜑 → (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+) |
| 59 | 36, 58 | rpaddcld 13066 | . . 3 ⊢ (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+) |
| 60 | 27, 59 | rpaddcld 13066 | . 2 ⊢ (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+) |
| 61 | 1, 60 | eqeltrid 2838 | 1 ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 ≤ cle 11270 − cmin 11466 / cdiv 11894 ℕcn 12240 2c2 12295 3c3 12296 4c4 12297 ℤcz 12588 ;cdc 12708 ℝ+crp 13008 (,)cioo 13362 ↑cexp 14079 expce 16077 ψcchp 27055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-ioo 13366 df-ico 13368 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 |
| This theorem is referenced by: pntlemb 27560 pntleme 27571 |
| Copyright terms: Public domain | W3C validator |