![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntlema | Structured version Visualization version GIF version |
Description: Lemma for pnt 25755. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
pntlem1.y | ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
pntlem1.x | ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
pntlem1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
pntlem1.w | ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
Ref | Expression |
---|---|
pntlema | ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.w | . 2 ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) | |
2 | pntlem1.y | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) | |
3 | 2 | simpld 490 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ+) |
4 | 4nn 11459 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
5 | nnrp 12150 | . . . . . . 7 ⊢ (4 ∈ ℕ → 4 ∈ ℝ+) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 4 ∈ ℝ+ |
7 | pntlem1.r | . . . . . . . . 9 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
8 | pntlem1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
9 | pntlem1.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
10 | pntlem1.l | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
11 | pntlem1.d | . . . . . . . . 9 ⊢ 𝐷 = (𝐴 + 1) | |
12 | pntlem1.f | . . . . . . . . 9 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
13 | 7, 8, 9, 10, 11, 12 | pntlemd 25735 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
14 | 13 | simp1d 1133 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
15 | pntlem1.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
16 | pntlem1.u2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
17 | pntlem1.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑈 / 𝐷) | |
18 | pntlem1.k | . . . . . . . . 9 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
19 | 7, 8, 9, 10, 11, 12, 15, 16, 17, 18 | pntlemc 25736 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
20 | 19 | simp1d 1133 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
21 | 14, 20 | rpmulcld 12197 | . . . . . 6 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ+) |
22 | rpdivcl 12164 | . . . . . 6 ⊢ ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+) | |
23 | 6, 21, 22 | sylancr 581 | . . . . 5 ⊢ (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+) |
24 | 3, 23 | rpaddcld 12196 | . . . 4 ⊢ (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+) |
25 | 2z 11761 | . . . 4 ⊢ 2 ∈ ℤ | |
26 | rpexpcl 13197 | . . . 4 ⊢ (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) | |
27 | 24, 25, 26 | sylancl 580 | . . 3 ⊢ (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+) |
28 | pntlem1.x | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) | |
29 | 28 | simpld 490 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
30 | 19 | simp2d 1134 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
31 | rpexpcl 13197 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+) | |
32 | 30, 25, 31 | sylancl 580 | . . . . . 6 ⊢ (𝜑 → (𝐾↑2) ∈ ℝ+) |
33 | 29, 32 | rpmulcld 12197 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+) |
34 | 4z 11763 | . . . . 5 ⊢ 4 ∈ ℤ | |
35 | rpexpcl 13197 | . . . . 5 ⊢ (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) | |
36 | 33, 34, 35 | sylancl 580 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+) |
37 | 3nn0 11662 | . . . . . . . . . . 11 ⊢ 3 ∈ ℕ0 | |
38 | 2nn 11448 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
39 | 37, 38 | decnncl 11866 | . . . . . . . . . 10 ⊢ ;32 ∈ ℕ |
40 | nnrp 12150 | . . . . . . . . . 10 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . . 9 ⊢ ;32 ∈ ℝ+ |
42 | rpmulcl 12162 | . . . . . . . . 9 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
43 | 41, 9, 42 | sylancr 581 | . . . . . . . 8 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
44 | 19 | simp3d 1135 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
45 | 44 | simp3d 1135 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
46 | rpexpcl 13197 | . . . . . . . . . . 11 ⊢ ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+) | |
47 | 20, 25, 46 | sylancl 580 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸↑2) ∈ ℝ+) |
48 | 14, 47 | rpmulcld 12197 | . . . . . . . . 9 ⊢ (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+) |
49 | 45, 48 | rpmulcld 12197 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+) |
50 | 43, 49 | rpdivcld 12198 | . . . . . . 7 ⊢ (𝜑 → ((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+) |
51 | 3nn 11454 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ | |
52 | nnrp 12150 | . . . . . . . . . 10 ⊢ (3 ∈ ℕ → 3 ∈ ℝ+) | |
53 | 51, 52 | ax-mp 5 | . . . . . . . . 9 ⊢ 3 ∈ ℝ+ |
54 | rpmulcl 12162 | . . . . . . . . 9 ⊢ ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+) | |
55 | 15, 53, 54 | sylancl 580 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 · 3) ∈ ℝ+) |
56 | pntlem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
57 | 55, 56 | rpaddcld 12196 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+) |
58 | 50, 57 | rpmulcld 12197 | . . . . . 6 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+) |
59 | 58 | rpred 12181 | . . . . 5 ⊢ (𝜑 → (((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ) |
60 | 59 | rpefcld 15237 | . . . 4 ⊢ (𝜑 → (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+) |
61 | 36, 60 | rpaddcld 12196 | . . 3 ⊢ (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+) |
62 | 27, 61 | rpaddcld 12196 | . 2 ⊢ (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+) |
63 | 1, 62 | syl5eqel 2862 | 1 ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 class class class wbr 4886 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 0cc0 10272 1c1 10273 + caddc 10275 · cmul 10277 < clt 10411 ≤ cle 10412 − cmin 10606 / cdiv 11032 ℕcn 11374 2c2 11430 3c3 11431 4c4 11432 ℤcz 11728 ;cdc 11845 ℝ+crp 12137 (,)cioo 12487 ↑cexp 13178 expce 15194 ψcchp 25271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-rp 12138 df-ioo 12491 df-ico 12493 df-fz 12644 df-fzo 12785 df-fl 12912 df-seq 13120 df-exp 13179 df-fac 13379 df-bc 13408 df-hash 13436 df-shft 14214 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-limsup 14610 df-clim 14627 df-rlim 14628 df-sum 14825 df-ef 15200 |
This theorem is referenced by: pntlemb 25738 pntleme 25749 |
Copyright terms: Public domain | W3C validator |