MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlema Structured version   Visualization version   GIF version

Theorem pntlema 27559
Description: Lemma for pnt 27577. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
Assertion
Ref Expression
pntlema (𝜑𝑊 ∈ ℝ+)
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)

Proof of Theorem pntlema
StepHypRef Expression
1 pntlem1.w . 2 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
2 pntlem1.y . . . . . 6 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
32simpld 494 . . . . 5 (𝜑𝑌 ∈ ℝ+)
4 4nn 12323 . . . . . . 7 4 ∈ ℕ
5 nnrp 13020 . . . . . . 7 (4 ∈ ℕ → 4 ∈ ℝ+)
64, 5ax-mp 5 . . . . . 6 4 ∈ ℝ+
7 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
8 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
9 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
10 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
11 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
12 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
137, 8, 9, 10, 11, 12pntlemd 27557 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1413simp1d 1142 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
15 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
16 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
17 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
18 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
197, 8, 9, 10, 11, 12, 15, 16, 17, 18pntlemc 27558 . . . . . . . 8 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2019simp1d 1142 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2114, 20rpmulcld 13067 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
22 rpdivcl 13034 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
236, 21, 22sylancr 587 . . . . 5 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
243, 23rpaddcld 13066 . . . 4 (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+)
25 2z 12624 . . . 4 2 ∈ ℤ
26 rpexpcl 14098 . . . 4 (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
2724, 25, 26sylancl 586 . . 3 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
28 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
2928simpld 494 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
3019simp2d 1143 . . . . . . 7 (𝜑𝐾 ∈ ℝ+)
31 rpexpcl 14098 . . . . . . 7 ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+)
3230, 25, 31sylancl 586 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℝ+)
3329, 32rpmulcld 13067 . . . . 5 (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+)
34 4z 12626 . . . . 5 4 ∈ ℤ
35 rpexpcl 14098 . . . . 5 (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
3633, 34, 35sylancl 586 . . . 4 (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
37 3nn0 12519 . . . . . . . . . . 11 3 ∈ ℕ0
38 2nn 12313 . . . . . . . . . . 11 2 ∈ ℕ
3937, 38decnncl 12728 . . . . . . . . . 10 32 ∈ ℕ
40 nnrp 13020 . . . . . . . . . 10 (32 ∈ ℕ → 32 ∈ ℝ+)
4139, 40ax-mp 5 . . . . . . . . 9 32 ∈ ℝ+
42 rpmulcl 13032 . . . . . . . . 9 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
4341, 9, 42sylancr 587 . . . . . . . 8 (𝜑 → (32 · 𝐵) ∈ ℝ+)
4419simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
4544simp3d 1144 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
46 rpexpcl 14098 . . . . . . . . . . 11 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4720, 25, 46sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℝ+)
4814, 47rpmulcld 13067 . . . . . . . . 9 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
4945, 48rpmulcld 13067 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+)
5043, 49rpdivcld 13068 . . . . . . 7 (𝜑 → ((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+)
51 3rp 13014 . . . . . . . . 9 3 ∈ ℝ+
52 rpmulcl 13032 . . . . . . . . 9 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+)
5315, 51, 52sylancl 586 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ+)
54 pntlem1.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
5553, 54rpaddcld 13066 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+)
5650, 55rpmulcld 13067 . . . . . 6 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+)
5756rpred 13051 . . . . 5 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ)
5857rpefcld 16123 . . . 4 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+)
5936, 58rpaddcld 13066 . . 3 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+)
6027, 59rpaddcld 13066 . 2 (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+)
611, 60eqeltrid 2838 1 (𝜑𝑊 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  3c3 12296  4c4 12297  cz 12588  cdc 12708  +crp 13008  (,)cioo 13362  cexp 14079  expce 16077  ψcchp 27055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-ioo 13366  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083
This theorem is referenced by:  pntlemb  27560  pntleme  27571
  Copyright terms: Public domain W3C validator