MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnex Structured version   Visualization version   GIF version

Theorem mopnex 24405
Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
mopnex.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnex (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
Distinct variable groups:   𝐷,𝑑   𝐽,𝑑   𝑋,𝑑

Proof of Theorem mopnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12897 . . 3 1 ∈ ℝ+
2 eqid 2729 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))
32stdbdmet 24402 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ+) → (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋))
41, 3mpan2 691 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋))
5 1xr 11174 . . 3 1 ∈ ℝ*
6 0lt1 11642 . . 3 0 < 1
7 mopnex.1 . . . 4 𝐽 = (MetOpen‘𝐷)
82, 7stdbdmopn 24404 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ* ∧ 0 < 1) → 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
95, 6, 8mp3an23 1455 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
10 fveq2 6822 . . 3 (𝑑 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) → (MetOpen‘𝑑) = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
1110rspceeqv 3600 . 2 (((𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
124, 9, 11syl2anc 584 1 (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  cmpo 7351  0cc0 11009  1c1 11010  *cxr 11148   < clt 11149  cle 11150  +crp 12893  ∞Metcxmet 21246  Metcmet 21247  MetOpencmopn 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-icc 13255  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-bases 22831
This theorem is referenced by:  methaus  24406
  Copyright terms: Public domain W3C validator