MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnex Structured version   Visualization version   GIF version

Theorem mopnex 24248
Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
mopnex.1 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
mopnex (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆƒπ‘‘ ∈ (Metβ€˜π‘‹)𝐽 = (MetOpenβ€˜π‘‘))
Distinct variable groups:   𝐷,𝑑   𝐽,𝑑   𝑋,𝑑

Proof of Theorem mopnex
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12982 . . 3 1 ∈ ℝ+
2 eqid 2732 . . . 4 (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1))
32stdbdmet 24245 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 1 ∈ ℝ+) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1)) ∈ (Metβ€˜π‘‹))
41, 3mpan2 689 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1)) ∈ (Metβ€˜π‘‹))
5 1xr 11277 . . 3 1 ∈ ℝ*
6 0lt1 11740 . . 3 0 < 1
7 mopnex.1 . . . 4 𝐽 = (MetOpenβ€˜π·)
82, 7stdbdmopn 24247 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 1 ∈ ℝ* ∧ 0 < 1) β†’ 𝐽 = (MetOpenβ€˜(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1))))
95, 6, 8mp3an23 1453 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 = (MetOpenβ€˜(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1))))
10 fveq2 6891 . . 3 (𝑑 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1)) β†’ (MetOpenβ€˜π‘‘) = (MetOpenβ€˜(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1))))
1110rspceeqv 3633 . 2 (((π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1)) ∈ (Metβ€˜π‘‹) ∧ 𝐽 = (MetOpenβ€˜(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((π‘₯𝐷𝑦) ≀ 1, (π‘₯𝐷𝑦), 1)))) β†’ βˆƒπ‘‘ ∈ (Metβ€˜π‘‹)𝐽 = (MetOpenβ€˜π‘‘))
124, 9, 11syl2anc 584 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆƒπ‘‘ ∈ (Metβ€˜π‘‹)𝐽 = (MetOpenβ€˜π‘‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  ifcif 4528   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413  0cc0 11112  1c1 11113  β„*cxr 11251   < clt 11252   ≀ cle 11253  β„+crp 12978  βˆžMetcxmet 21129  Metcmet 21130  MetOpencmopn 21134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-icc 13335  df-topgen 17393  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-bases 22669
This theorem is referenced by:  methaus  24249
  Copyright terms: Public domain W3C validator