Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mopnex | Structured version Visualization version GIF version |
Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
mopnex.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
mopnex | ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1rp 12663 | . . 3 ⊢ 1 ∈ ℝ+ | |
2 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) | |
3 | 2 | stdbdmet 23578 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ+) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋)) |
4 | 1, 3 | mpan2 687 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋)) |
5 | 1xr 10965 | . . 3 ⊢ 1 ∈ ℝ* | |
6 | 0lt1 11427 | . . 3 ⊢ 0 < 1 | |
7 | mopnex.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
8 | 2, 7 | stdbdmopn 23580 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ* ∧ 0 < 1) → 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) |
9 | 5, 6, 8 | mp3an23 1451 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) |
10 | fveq2 6756 | . . 3 ⊢ (𝑑 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) → (MetOpen‘𝑑) = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) | |
11 | 10 | rspceeqv 3567 | . 2 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
12 | 4, 9, 11 | syl2anc 583 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ifcif 4456 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 0cc0 10802 1c1 10803 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℝ+crp 12659 ∞Metcxmet 20495 Metcmet 20496 MetOpencmopn 20500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-bases 22004 |
This theorem is referenced by: methaus 23582 |
Copyright terms: Public domain | W3C validator |