MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnex Structured version   Visualization version   GIF version

Theorem mopnex 22545
Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
mopnex.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnex (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
Distinct variable groups:   𝐷,𝑑   𝐽,𝑑   𝑋,𝑑

Proof of Theorem mopnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12040 . . 3 1 ∈ ℝ+
2 eqid 2771 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))
32stdbdmet 22542 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ+) → (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋))
41, 3mpan2 665 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋))
5 rpxr 12044 . . . 4 (1 ∈ ℝ+ → 1 ∈ ℝ*)
61, 5ax-mp 5 . . 3 1 ∈ ℝ*
7 0lt1 10753 . . 3 0 < 1
8 mopnex.1 . . . 4 𝐽 = (MetOpen‘𝐷)
92, 8stdbdmopn 22544 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ* ∧ 0 < 1) → 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
106, 7, 9mp3an23 1564 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
11 fveq2 6333 . . . 4 (𝑑 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) → (MetOpen‘𝑑) = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
1211eqeq2d 2781 . . 3 (𝑑 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) → (𝐽 = (MetOpen‘𝑑) ↔ 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))))
1312rspcev 3461 . 2 (((𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
144, 10, 13syl2anc 567 1 (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wrex 3062  ifcif 4226   class class class wbr 4787  cfv 6032  (class class class)co 6794  cmpt2 6796  0cc0 10139  1c1 10140  *cxr 10276   < clt 10277  cle 10278  +crp 12036  ∞Metcxmt 19947  Metcme 19948  MetOpencmopn 19952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-map 8012  df-en 8111  df-dom 8112  df-sdom 8113  df-sup 8505  df-inf 8506  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-n0 11496  df-z 11581  df-uz 11890  df-q 11993  df-rp 12037  df-xneg 12152  df-xadd 12153  df-xmul 12154  df-icc 12388  df-topgen 16313  df-psmet 19954  df-xmet 19955  df-met 19956  df-bl 19957  df-mopn 19958  df-bases 20972
This theorem is referenced by:  methaus  22546
  Copyright terms: Public domain W3C validator