| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fseqsupubi | Structured version Visualization version GIF version | ||
| Description: The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005.) |
| Ref | Expression |
|---|---|
| fseqsupubi | ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝐹‘𝐾) ≤ sup(ran 𝐹, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6665 | . . 3 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ran 𝐹 ⊆ ℝ) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ⊆ ℝ) |
| 3 | fdm 6667 | . . 3 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → dom 𝐹 = (𝑀...𝑁)) | |
| 4 | ne0i 4290 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅) | |
| 5 | dm0rn0 5870 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
| 6 | eqeq1 2737 | . . . . . . 7 ⊢ (dom 𝐹 = (𝑀...𝑁) → (dom 𝐹 = ∅ ↔ (𝑀...𝑁) = ∅)) | |
| 7 | 6 | biimpd 229 | . . . . . 6 ⊢ (dom 𝐹 = (𝑀...𝑁) → (dom 𝐹 = ∅ → (𝑀...𝑁) = ∅)) |
| 8 | 5, 7 | biimtrrid 243 | . . . . 5 ⊢ (dom 𝐹 = (𝑀...𝑁) → (ran 𝐹 = ∅ → (𝑀...𝑁) = ∅)) |
| 9 | 8 | necon3d 2950 | . . . 4 ⊢ (dom 𝐹 = (𝑀...𝑁) → ((𝑀...𝑁) ≠ ∅ → ran 𝐹 ≠ ∅)) |
| 10 | 4, 9 | mpan9 506 | . . 3 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ dom 𝐹 = (𝑀...𝑁)) → ran 𝐹 ≠ ∅) |
| 11 | 3, 10 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ran 𝐹 ≠ ∅) |
| 12 | fsequb2 13887 | . . 3 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
| 14 | ffn 6658 | . . 3 ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → 𝐹 Fn (𝑀...𝑁)) | |
| 15 | fnfvelrn 7021 | . . . 4 ⊢ ((𝐹 Fn (𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐹‘𝐾) ∈ ran 𝐹) | |
| 16 | 15 | ancoms 458 | . . 3 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹 Fn (𝑀...𝑁)) → (𝐹‘𝐾) ∈ ran 𝐹) |
| 17 | 14, 16 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝐹‘𝐾) ∈ ran 𝐹) |
| 18 | 2, 11, 13, 17 | suprubd 12093 | 1 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝐹‘𝐾) ≤ sup(ran 𝐹, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 dom cdm 5621 ran crn 5622 Fn wfn 6483 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 supcsup 9333 ℝcr 11014 < clt 11155 ≤ cle 11156 ...cfz 13411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |