Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrausgrb Structured version   Visualization version   GIF version

Theorem usgrausgrb 26960
 Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.)
Hypotheses
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
ausgrusgri.1 𝑂 = {𝑓𝑓:dom 𝑓1-1→ran 𝑓}
Assertion
Ref Expression
usgrausgrb ((𝐻𝑊 ∧ (iEdg‘𝐻) ∈ 𝑂) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ 𝐻 ∈ USGraph))
Distinct variable groups:   𝑣,𝑒,𝑥,𝐻   𝑓,𝐻   𝑥,𝑊
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒,𝑓)   𝑂(𝑥,𝑣,𝑒,𝑓)   𝑊(𝑣,𝑒,𝑓)

Proof of Theorem usgrausgrb
StepHypRef Expression
1 ausgr.1 . . . . . 6 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
2 ausgrusgri.1 . . . . . 6 𝑂 = {𝑓𝑓:dom 𝑓1-1→ran 𝑓}
31, 2ausgrusgri 26959 . . . . 5 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph)
433exp 1116 . . . 4 (𝐻𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → ((iEdg‘𝐻) ∈ 𝑂𝐻 ∈ USGraph)))
54com23 86 . . 3 (𝐻𝑊 → ((iEdg‘𝐻) ∈ 𝑂 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → 𝐻 ∈ USGraph)))
65imp 410 . 2 ((𝐻𝑊 ∧ (iEdg‘𝐻) ∈ 𝑂) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → 𝐻 ∈ USGraph))
71usgrausgri 26957 . 2 (𝐻 ∈ USGraph → (Vtx‘𝐻)𝐺(Edg‘𝐻))
86, 7impbid1 228 1 ((𝐻𝑊 ∧ (iEdg‘𝐻) ∈ 𝑂) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ 𝐻 ∈ USGraph))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2114  {cab 2800  {crab 3134   ⊆ wss 3908  𝒫 cpw 4511   class class class wbr 5042  {copab 5104  dom cdm 5532  ran crn 5533  –1-1→wf1 6331  ‘cfv 6334  2c2 11680  ♯chash 13686  Vtxcvtx 26787  iEdgciedg 26788  Edgcedg 26838  USGraphcusgr 26940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-edg 26839  df-usgr 26942 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator