Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
-cneg 11441 ℤcz 12554 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-nn 12209 df-z 12555 |
This theorem is referenced by: znnn0nn
12669 zriotaneg
12671 zsupss
12917 ceicl
13802 modnegd
13887 expaddzlem
14067 climshft2
15522 fsumshftm
15723 eftlub
16048 dvdsadd2b
16245 bitscmp
16375 bitsf1
16383 bitsres
16410 modgcd
16470 pcneg
16803 gznegcl
16864 gzcjcl
16865 4sqlem10
16876 mulgdirlem
18979 mulgdir
18980 mulgmodid
18987 subgmulg
19014 zringlpirlem3
21025 aannenlem1
25832 geolim3
25843 aaliou3lem1
25846 aaliou3lem2
25847 aaliou3lem3
25848 aaliou3lem5
25851 aaliou3lem6
25852 aaliou3lem7
25853 ulmshft
25893 sineq0
26024 wilthlem1
26561 lgseisenlem2
26868 2sqlem4
26913 padicabvcxp
27124 numdenneg
32010 archirngz
32322 archiabllem1b
32325 archiabllem2c
32328 mdetlap
32800 qqhval2lem
32949 breprexplemc
33632 knoppndvlem1
35376 knoppndvlem2
35377 knoppndvlem7
35382 knoppndvlem14
35389 knoppndvlem16
35391 knoppndvlem17
35392 knoppndvlem19
35394 knoppndvlem21
35396 ltflcei
36464 cntotbnd
36652 pellexlem5
41556 pell1234qrreccl
41577 pellfund14
41621 congsub
41694 acongeq
41707 dvdsacongtr
41708 jm2.19
41717 jm2.25
41723 jm2.26lem3
41725 dvradcnv2
43091 binomcxplemnotnn0
43100 sineq0ALT
43683 fourierdlem41
44850 fourierdlem48
44856 fourierdlem49
44857 fourierdlem64
44872 fourierdlem89
44897 fourierdlem91
44899 fourierdlem97
44905 fourierdlem103
44911 etransclem9
44945 etransclem35
44971 etransclem41
44977 etransclem47
44983 |