Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2105
-cneg 11452 ℤcz 12565 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912
ax-6 1970 ax-7 2010 ax-8 2107
ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-sub 11453 df-neg 11454 df-nn 12220 df-z 12566 |
This theorem is referenced by: znnn0nn
12680 zriotaneg
12682 zsupss
12928 ceicl
13813 modnegd
13898 expaddzlem
14078 climshft2
15533 fsumshftm
15734 eftlub
16059 dvdsadd2b
16256 bitscmp
16386 bitsf1
16394 bitsres
16421 modgcd
16481 pcneg
16814 gznegcl
16875 gzcjcl
16876 4sqlem10
16887 mulgdirlem
19028 mulgdir
19029 mulgmodid
19036 subgmulg
19063 zringlpirlem3
21324 aannenlem1
26180 geolim3
26191 aaliou3lem1
26194 aaliou3lem2
26195 aaliou3lem3
26196 aaliou3lem5
26199 aaliou3lem6
26200 aaliou3lem7
26201 ulmshft
26241 sineq0
26373 wilthlem1
26913 lgseisenlem2
27222 2sqlem4
27267 padicabvcxp
27478 numdenneg
32456 archirngz
32771 archiabllem1b
32774 archiabllem2c
32777 mdetlap
33276 qqhval2lem
33425 breprexplemc
34108 knoppndvlem1
35852 knoppndvlem2
35853 knoppndvlem7
35858 knoppndvlem14
35865 knoppndvlem16
35867 knoppndvlem17
35868 knoppndvlem19
35870 knoppndvlem21
35872 ltflcei
36940 cntotbnd
37128 pellexlem5
42034 pell1234qrreccl
42055 pellfund14
42099 congsub
42172 acongeq
42185 dvdsacongtr
42186 jm2.19
42195 jm2.25
42201 jm2.26lem3
42203 dvradcnv2
43569 binomcxplemnotnn0
43578 sineq0ALT
44161 fourierdlem41
45323 fourierdlem48
45329 fourierdlem49
45330 fourierdlem64
45345 fourierdlem89
45370 fourierdlem91
45372 fourierdlem97
45378 fourierdlem103
45384 etransclem9
45418 etransclem35
45444 etransclem41
45450 etransclem47
45456 |