| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znval2 | GIF version | ||
| Description: Self-referential expression for the ℤ/nℤ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znval2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znval2.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
| znval2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znval2.l | ⊢ ≤ = (le‘𝑌) |
| Ref | Expression |
|---|---|
| znval2 | ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ≤ 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval2.s | . . 3 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znval2.u | . . 3 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
| 3 | znval2.y | . . 3 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | eqid 2207 | . . 3 ⊢ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) | |
| 5 | eqid 2207 | . . 3 ⊢ if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 6 | eqid 2207 | . . 3 ⊢ ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) = ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) | |
| 7 | 1, 2, 3, 4, 5, 6 | znval 14513 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉)) |
| 8 | znval2.l | . . . . 5 ⊢ ≤ = (le‘𝑌) | |
| 9 | 1, 2, 3, 4, 5, 8 | znle 14514 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))) |
| 10 | 9 | opeq2d 3840 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 〈(le‘ndx), ≤ 〉 = 〈(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉) |
| 11 | 10 | oveq2d 5983 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑈 sSet 〈(le‘ndx), ≤ 〉) = (𝑈 sSet 〈(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉)) |
| 12 | 7, 11 | eqtr4d 2243 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ≤ 〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ifcif 3579 {csn 3643 〈cop 3646 ◡ccnv 4692 ↾ cres 4695 ∘ ccom 4697 ‘cfv 5290 (class class class)co 5967 0cc0 7960 ≤ cle 8143 ℕ0cn0 9330 ℤcz 9407 ..^cfzo 10299 ndxcnx 12944 sSet csts 12945 lecple 13031 /s cqus 13247 ~QG cqg 13620 RSpancrsp 14345 ℤringczring 14467 ℤRHomczrh 14488 ℤ/nℤczn 14490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-ec 6645 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-dec 9540 df-uz 9684 df-rp 9811 df-fz 10166 df-cj 11268 df-abs 11425 df-struct 12949 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-mulr 13038 df-starv 13039 df-sca 13040 df-vsca 13041 df-ip 13042 df-tset 13043 df-ple 13044 df-ds 13046 df-unif 13047 df-0g 13205 df-topgen 13207 df-iimas 13249 df-qus 13250 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-subg 13621 df-eqg 13623 df-cmn 13737 df-mgp 13798 df-ur 13837 df-ring 13875 df-cring 13876 df-rhm 14029 df-subrg 14096 df-lsp 14264 df-sra 14312 df-rgmod 14313 df-rsp 14347 df-bl 14423 df-mopn 14424 df-fg 14426 df-metu 14427 df-cnfld 14434 df-zring 14468 df-zrh 14491 df-zn 14493 |
| This theorem is referenced by: znbaslemnn 14516 |
| Copyright terms: Public domain | W3C validator |