Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9p2e11 | Structured version Visualization version GIF version |
Description: 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
9p2e11 | ⊢ (9 + 2) = ;11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 12317 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 1nn0 12309 | . 2 ⊢ 1 ∈ ℕ0 | |
3 | 0nn0 12308 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | df-2 12096 | . 2 ⊢ 2 = (1 + 1) | |
5 | 1e0p1 12539 | . 2 ⊢ 1 = (0 + 1) | |
6 | 9p1e10 12499 | . 2 ⊢ (9 + 1) = ;10 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 12567 | 1 ⊢ (9 + 2) = ;11 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 (class class class)co 7308 0cc0 10931 1c1 10932 + caddc 10934 2c2 12088 9c9 12095 ;cdc 12497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 ax-resscn 10988 ax-1cn 10989 ax-icn 10990 ax-addcl 10991 ax-addrcl 10992 ax-mulcl 10993 ax-mulrcl 10994 ax-mulcom 10995 ax-addass 10996 ax-mulass 10997 ax-distr 10998 ax-i2m1 10999 ax-1ne0 11000 ax-1rid 11001 ax-rnegex 11002 ax-rrecex 11003 ax-cnre 11004 ax-pre-lttri 11005 ax-pre-lttrn 11006 ax-pre-ltadd 11007 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-iun 4932 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7311 df-om 7749 df-2nd 7868 df-frecs 8132 df-wrecs 8163 df-recs 8237 df-rdg 8276 df-er 8534 df-en 8770 df-dom 8771 df-sdom 8772 df-pnf 11071 df-mnf 11072 df-ltxr 11074 df-nn 12034 df-2 12096 df-3 12097 df-4 12098 df-5 12099 df-6 12100 df-7 12101 df-8 12102 df-9 12103 df-n0 12294 df-dec 12498 |
This theorem is referenced by: 9p3e12 12585 9t9e81 12626 11prm 16875 prmlem2 16880 317prm 16886 631prm 16887 2503lem2 16898 4001lem1 16901 4001lem4 16904 hgt750lem2 32728 fmtno5lem4 45265 257prm 45270 |
Copyright terms: Public domain | W3C validator |