![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9p3e12 | Structured version Visualization version GIF version |
Description: 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9p3e12 | ⊢ (9 + 3) = ;12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 12478 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 2nn0 12471 | . 2 ⊢ 2 ∈ ℕ0 | |
3 | 1nn0 12470 | . 2 ⊢ 1 ∈ ℕ0 | |
4 | df-3 12258 | . 2 ⊢ 3 = (2 + 1) | |
5 | df-2 12257 | . 2 ⊢ 2 = (1 + 1) | |
6 | 9p2e11 12746 | . 2 ⊢ (9 + 2) = ;11 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 12729 | 1 ⊢ (9 + 3) = ;12 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7393 1c1 11093 + caddc 11095 2c2 12249 3c3 12250 9c9 12256 ;cdc 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-ltxr 11235 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-dec 12660 |
This theorem is referenced by: 9p4e13 12748 9t8e72 12787 1259lem2 17047 1259prm 17051 2503lem2 17053 fmtno5lem4 45994 fmtno4nprmfac193 46012 127prm 46037 ackval3012 47024 |
Copyright terms: Public domain | W3C validator |