MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p3e12 Structured version   Visualization version   GIF version

Theorem 9p3e12 12747
Description: 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
9p3e12 (9 + 3) = 12

Proof of Theorem 9p3e12
StepHypRef Expression
1 9nn0 12478 . 2 9 ∈ ℕ0
2 2nn0 12471 . 2 2 ∈ ℕ0
3 1nn0 12470 . 2 1 ∈ ℕ0
4 df-3 12258 . 2 3 = (2 + 1)
5 df-2 12257 . 2 2 = (1 + 1)
6 9p2e11 12746 . 2 (9 + 2) = 11
71, 2, 3, 4, 5, 66p5lem 12729 1 (9 + 3) = 12
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7393  1c1 11093   + caddc 11095  2c2 12249  3c3 12250  9c9 12256  cdc 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-ltxr 11235  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-dec 12660
This theorem is referenced by:  9p4e13  12748  9t8e72  12787  1259lem2  17047  1259prm  17051  2503lem2  17053  fmtno5lem4  45994  fmtno4nprmfac193  46012  127prm  46037  ackval3012  47024
  Copyright terms: Public domain W3C validator