Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackvalsuc1 | Structured version Visualization version GIF version |
Description: The Ackermann function at a successor of the first argument and an arbitrary second argument. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackvalsuc1 | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackvalsuc1mpt 46268 | . . 3 ⊢ (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1))) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1))) |
3 | fvoveq1 7330 | . . . 4 ⊢ (𝑛 = 𝑁 → ((IterComp‘(Ack‘𝑀))‘(𝑛 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))) | |
4 | 3 | fveq1d 6806 | . . 3 ⊢ (𝑛 = 𝑁 → (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) |
5 | 4 | adantl 483 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 = 𝑁) → (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) |
6 | simpr 486 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
7 | fvexd 6819 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1) ∈ V) | |
8 | 2, 5, 6, 7 | fvmptd 6914 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 1c1 10922 + caddc 10924 ℕ0cn0 12283 IterCompcitco 46247 Ackcack 46248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-seq 13772 df-ack 46250 |
This theorem is referenced by: ackvalsuc0val 46277 ackvalsucsucval 46278 |
Copyright terms: Public domain | W3C validator |