Proof of Theorem iseraltlem3
Step | Hyp | Ref
| Expression |
1 | | neg1rr 12097 |
. . . . . . . . . 10
⊢ -1 ∈
ℝ |
2 | 1 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → -1
∈ ℝ) |
3 | | neg1ne0 12098 |
. . . . . . . . . 10
⊢ -1 ≠
0 |
4 | 3 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → -1 ≠
0) |
5 | | iseralt.1 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
6 | | uzssz 12612 |
. . . . . . . . . . 11
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
7 | 5, 6 | eqsstri 3956 |
. . . . . . . . . 10
⊢ 𝑍 ⊆
ℤ |
8 | | simp2 1136 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ 𝑍) |
9 | 7, 8 | sselid 3920 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈
ℤ) |
10 | 2, 4, 9 | reexpclzd 13973 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑𝑁) ∈
ℝ) |
11 | 10 | recnd 11012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑𝑁) ∈
ℂ) |
12 | | iseralt.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
13 | | iseralt.6 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘))) |
14 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 ∈ ℝ) |
15 | 3 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 ≠ 0) |
16 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
17 | 7, 16 | sselid 3920 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
18 | 14, 15, 17 | reexpclzd 13973 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1↑𝑘) ∈ ℝ) |
19 | | iseralt.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
20 | 19 | ffvelrnda 6970 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
21 | 18, 20 | remulcld 11014 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((-1↑𝑘) · (𝐺‘𝑘)) ∈ ℝ) |
22 | 13, 21 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
23 | 5, 12, 22 | serfre 13761 |
. . . . . . . . . 10
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
24 | 23 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
25 | 8, 5 | eleqtrdi 2850 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈
(ℤ≥‘𝑀)) |
26 | | 2nn0 12259 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ0 |
27 | | simp3 1137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈
ℕ0) |
28 | | nn0mulcl 12278 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2
· 𝐾) ∈
ℕ0) |
29 | 26, 27, 28 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (2
· 𝐾) ∈
ℕ0) |
30 | | uzaddcl 12653 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (2 · 𝐾) ∈ ℕ0) → (𝑁 + (2 · 𝐾)) ∈
(ℤ≥‘𝑀)) |
31 | 25, 29, 30 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝑁 + (2 · 𝐾)) ∈
(ℤ≥‘𝑀)) |
32 | 31, 5 | eleqtrrdi 2851 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝑁 + (2 · 𝐾)) ∈ 𝑍) |
33 | 24, 32 | ffvelrnd 6971 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) ∈ ℝ) |
34 | 33 | recnd 11012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) ∈ ℂ) |
35 | 24, 8 | ffvelrnd 6971 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ) |
36 | 35 | recnd 11012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
37 | 11, 34, 36 | subdid 11440 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) |
38 | 37 | fveq2d 6787 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((-1↑𝑁)
· ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))) |
39 | 33, 35 | resubcld 11412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ) |
40 | 39 | recnd 11012 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℂ) |
41 | 11, 40 | absmuld 15175 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((-1↑𝑁)
· ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) = ((abs‘(-1↑𝑁)) ·
(abs‘((seq𝑀( + ,
𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))))) |
42 | 38, 41 | eqtr3d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘(((-1↑𝑁)
· (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) = ((abs‘(-1↑𝑁)) ·
(abs‘((seq𝑀( + ,
𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))))) |
43 | 2 | recnd 11012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → -1
∈ ℂ) |
44 | | absexpz 15026 |
. . . . . . 7
⊢ ((-1
∈ ℂ ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) →
(abs‘(-1↑𝑁)) =
((abs‘-1)↑𝑁)) |
45 | 43, 4, 9, 44 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘(-1↑𝑁)) =
((abs‘-1)↑𝑁)) |
46 | | ax-1cn 10938 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
47 | 46 | absnegi 15121 |
. . . . . . . . 9
⊢
(abs‘-1) = (abs‘1) |
48 | | abs1 15018 |
. . . . . . . . 9
⊢
(abs‘1) = 1 |
49 | 47, 48 | eqtri 2767 |
. . . . . . . 8
⊢
(abs‘-1) = 1 |
50 | 49 | oveq1i 7294 |
. . . . . . 7
⊢
((abs‘-1)↑𝑁) = (1↑𝑁) |
51 | | 1exp 13821 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
(1↑𝑁) =
1) |
52 | 9, 51 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(1↑𝑁) =
1) |
53 | 50, 52 | eqtrid 2791 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((abs‘-1)↑𝑁) =
1) |
54 | 45, 53 | eqtrd 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘(-1↑𝑁)) =
1) |
55 | 54 | oveq1d 7299 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((abs‘(-1↑𝑁))
· (abs‘((seq𝑀(
+ , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) = (1 · (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))))) |
56 | 40 | abscld 15157 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ∈ ℝ) |
57 | 56 | recnd 11012 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ∈ ℂ) |
58 | 57 | mulid2d 11002 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (1
· (abs‘((seq𝑀(
+ , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) |
59 | 42, 55, 58 | 3eqtrd 2783 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘(((-1↑𝑁)
· (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) |
60 | 10, 35 | remulcld 11014 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ) |
61 | 19 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 𝐺:𝑍⟶ℝ) |
62 | 5 | peano2uzs 12651 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑍 → (𝑁 + 1) ∈ 𝑍) |
63 | 62 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝑁 + 1) ∈ 𝑍) |
64 | 61, 63 | ffvelrnd 6971 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) ∈ ℝ) |
65 | 60, 64 | resubcld 11412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ∈ ℝ) |
66 | 5 | peano2uzs 12651 |
. . . . . . . 8
⊢ ((𝑁 + (2 · 𝐾)) ∈ 𝑍 → ((𝑁 + (2 · 𝐾)) + 1) ∈ 𝑍) |
67 | 32, 66 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → ((𝑁 + (2 · 𝐾)) + 1) ∈ 𝑍) |
68 | 24, 67 | ffvelrnd 6971 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) ∈ ℝ) |
69 | 10, 68 | remulcld 11014 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ∈ ℝ) |
70 | 10, 33 | remulcld 11014 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ∈ ℝ) |
71 | | seqp1 13745 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
72 | 25, 71 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
73 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑁 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑁 + 1))) |
74 | | oveq2 7292 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑁 + 1) → (-1↑𝑘) = (-1↑(𝑁 + 1))) |
75 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑁 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑁 + 1))) |
76 | 74, 75 | oveq12d 7302 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑁 + 1) → ((-1↑𝑘) · (𝐺‘𝑘)) = ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1)))) |
77 | 73, 76 | eqeq12d 2755 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑁 + 1) → ((𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘)) ↔ (𝐹‘(𝑁 + 1)) = ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1))))) |
78 | 13 | ralrimiva 3104 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘))) |
79 | 78 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘))) |
80 | 77, 79, 63 | rspcdva 3563 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝐹‘(𝑁 + 1)) = ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1)))) |
81 | 80 | oveq2d 7300 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1))))) |
82 | 43, 4, 9 | expp1zd 13882 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(𝑁 + 1)) =
((-1↑𝑁) ·
-1)) |
83 | | neg1cn 12096 |
. . . . . . . . . . . . . . 15
⊢ -1 ∈
ℂ |
84 | | mulcom 10966 |
. . . . . . . . . . . . . . 15
⊢
(((-1↑𝑁) ∈
ℂ ∧ -1 ∈ ℂ) → ((-1↑𝑁) · -1) = (-1 · (-1↑𝑁))) |
85 | 11, 83, 84 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) · -1) =
(-1 · (-1↑𝑁))) |
86 | 11 | mulm1d 11436 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (-1
· (-1↑𝑁)) =
-(-1↑𝑁)) |
87 | 82, 85, 86 | 3eqtrd 2783 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(𝑁 + 1)) =
-(-1↑𝑁)) |
88 | 87 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑(𝑁 + 1)) ·
(𝐺‘(𝑁 + 1))) = (-(-1↑𝑁) · (𝐺‘(𝑁 + 1)))) |
89 | 64 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) ∈ ℂ) |
90 | 11, 89 | mulneg1d 11437 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-(-1↑𝑁) ·
(𝐺‘(𝑁 + 1))) = -((-1↑𝑁) · (𝐺‘(𝑁 + 1)))) |
91 | 88, 90 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑(𝑁 + 1)) ·
(𝐺‘(𝑁 + 1))) = -((-1↑𝑁) · (𝐺‘(𝑁 + 1)))) |
92 | 91 | oveq2d 7300 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘𝑁) + ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1)))) = ((seq𝑀( + , 𝐹)‘𝑁) + -((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) |
93 | 72, 81, 92 | 3eqtrd 2783 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + -((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) |
94 | 10, 64 | remulcld 11014 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(𝐺‘(𝑁 + 1))) ∈ ℝ) |
95 | 94 | recnd 11012 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(𝐺‘(𝑁 + 1))) ∈ ℂ) |
96 | 36, 95 | negsubd 11347 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘𝑁) + -((-1↑𝑁) · (𝐺‘(𝑁 + 1)))) = ((seq𝑀( + , 𝐹)‘𝑁) − ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) |
97 | 93, 96 | eqtrd 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) − ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) |
98 | 97 | oveq2d 7300 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + 1))) = ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘𝑁) − ((-1↑𝑁) · (𝐺‘(𝑁 + 1)))))) |
99 | 11, 36, 95 | subdid 11440 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
((seq𝑀( + , 𝐹)‘𝑁) − ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘(𝑁 + 1)))))) |
100 | 9 | zcnd 12436 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈
ℂ) |
101 | 100 | 2timesd 12225 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (2
· 𝑁) = (𝑁 + 𝑁)) |
102 | 101 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(2 · 𝑁)) =
(-1↑(𝑁 + 𝑁))) |
103 | | 2z 12361 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
104 | 103 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 2 ∈
ℤ) |
105 | | expmulz 13838 |
. . . . . . . . . . . . . 14
⊢ (((-1
∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(2
· 𝑁)) =
((-1↑2)↑𝑁)) |
106 | 43, 4, 104, 9, 105 | syl22anc 836 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(2 · 𝑁)) =
((-1↑2)↑𝑁)) |
107 | 102, 106 | eqtr3d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(𝑁 + 𝑁)) = ((-1↑2)↑𝑁)) |
108 | | neg1sqe1 13922 |
. . . . . . . . . . . . 13
⊢
(-1↑2) = 1 |
109 | 108 | oveq1i 7294 |
. . . . . . . . . . . 12
⊢
((-1↑2)↑𝑁)
= (1↑𝑁) |
110 | 107, 109 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(𝑁 + 𝑁)) = (1↑𝑁)) |
111 | | expaddz 13836 |
. . . . . . . . . . . 12
⊢ (((-1
∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
112 | 43, 4, 9, 9, 111 | syl22anc 836 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
113 | 110, 112,
52 | 3eqtr3d 2787 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(-1↑𝑁)) =
1) |
114 | 113 | oveq1d 7299 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(-1↑𝑁)) ·
(𝐺‘(𝑁 + 1))) = (1 · (𝐺‘(𝑁 + 1)))) |
115 | 11, 11, 89 | mulassd 11007 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(-1↑𝑁)) ·
(𝐺‘(𝑁 + 1))) = ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) |
116 | 89 | mulid2d 11002 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (1
· (𝐺‘(𝑁 + 1))) = (𝐺‘(𝑁 + 1))) |
117 | 114, 115,
116 | 3eqtr3d 2787 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
((-1↑𝑁) ·
(𝐺‘(𝑁 + 1)))) = (𝐺‘(𝑁 + 1))) |
118 | 117 | oveq2d 7300 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘𝑁)) − ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1)))) |
119 | 98, 99, 118 | 3eqtrd 2783 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + 1))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1)))) |
120 | | iseralt.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
121 | | iseralt.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ⇝ 0) |
122 | 5, 12, 19, 120, 121, 13 | iseraltlem2 15403 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑(𝑁 + 1)) ·
(seq𝑀( + , 𝐹)‘((𝑁 + 1) + (2 · 𝐾)))) ≤ ((-1↑(𝑁 + 1)) · (seq𝑀( + , 𝐹)‘(𝑁 + 1)))) |
123 | 62, 122 | syl3an2 1163 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑(𝑁 + 1)) ·
(seq𝑀( + , 𝐹)‘((𝑁 + 1) + (2 · 𝐾)))) ≤ ((-1↑(𝑁 + 1)) · (seq𝑀( + , 𝐹)‘(𝑁 + 1)))) |
124 | | 1cnd 10979 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 1 ∈
ℂ) |
125 | 29 | nn0cnd 12304 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (2
· 𝐾) ∈
ℂ) |
126 | 100, 124,
125 | add32d 11211 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → ((𝑁 + 1) + (2 · 𝐾)) = ((𝑁 + (2 · 𝐾)) + 1)) |
127 | 126 | fveq2d 6787 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘((𝑁 + 1) + (2 · 𝐾))) = (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) |
128 | 87, 127 | oveq12d 7302 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑(𝑁 + 1)) ·
(seq𝑀( + , 𝐹)‘((𝑁 + 1) + (2 · 𝐾)))) = (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)))) |
129 | 87 | oveq1d 7299 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑(𝑁 + 1)) ·
(seq𝑀( + , 𝐹)‘(𝑁 + 1))) = (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1)))) |
130 | 123, 128,
129 | 3brtr3d 5106 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-(-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1)))) |
131 | 68 | recnd 11012 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) ∈ ℂ) |
132 | 11, 131 | mulneg1d 11437 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-(-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) = -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)))) |
133 | 24, 63 | ffvelrnd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘(𝑁 + 1)) ∈ ℝ) |
134 | 133 | recnd 11012 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘(𝑁 + 1)) ∈ ℂ) |
135 | 11, 134 | mulneg1d 11437 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-(-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + 1))) = -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1)))) |
136 | 130, 132,
135 | 3brtr3d 5106 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
-((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1)))) |
137 | 10, 133 | remulcld 11014 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + 1))) ∈ ℝ) |
138 | 137, 69 | lenegd 11563 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ↔ -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))))) |
139 | 136, 138 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)))) |
140 | 119, 139 | eqbrtrrd 5099 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)))) |
141 | | seqp1 13745 |
. . . . . . . . . 10
⊢ ((𝑁 + (2 · 𝐾)) ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + (𝐹‘((𝑁 + (2 · 𝐾)) + 1)))) |
142 | 31, 141 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + (𝐹‘((𝑁 + (2 · 𝐾)) + 1)))) |
143 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → (𝐹‘𝑘) = (𝐹‘((𝑁 + (2 · 𝐾)) + 1))) |
144 | | oveq2 7292 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → (-1↑𝑘) = (-1↑((𝑁 + (2 · 𝐾)) + 1))) |
145 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → (𝐺‘𝑘) = (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) |
146 | 144, 145 | oveq12d 7302 |
. . . . . . . . . . . . 13
⊢ (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → ((-1↑𝑘) · (𝐺‘𝑘)) = ((-1↑((𝑁 + (2 · 𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) |
147 | 143, 146 | eqeq12d 2755 |
. . . . . . . . . . . 12
⊢ (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → ((𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘)) ↔ (𝐹‘((𝑁 + (2 · 𝐾)) + 1)) = ((-1↑((𝑁 + (2 · 𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) |
148 | 147, 79, 67 | rspcdva 3563 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝐾)) + 1)) = ((-1↑((𝑁 + (2 · 𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) |
149 | 7, 63 | sselid 3920 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝑁 + 1) ∈
ℤ) |
150 | 29 | nn0zd 12433 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (2
· 𝐾) ∈
ℤ) |
151 | | expaddz 13836 |
. . . . . . . . . . . . . . 15
⊢ (((-1
∈ ℂ ∧ -1 ≠ 0) ∧ ((𝑁 + 1) ∈ ℤ ∧ (2 · 𝐾) ∈ ℤ)) →
(-1↑((𝑁 + 1) + (2
· 𝐾))) =
((-1↑(𝑁 + 1)) ·
(-1↑(2 · 𝐾)))) |
152 | 43, 4, 149, 150, 151 | syl22anc 836 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑((𝑁 + 1) + (2
· 𝐾))) =
((-1↑(𝑁 + 1)) ·
(-1↑(2 · 𝐾)))) |
153 | 27 | nn0zd 12433 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈
ℤ) |
154 | | expmulz 13838 |
. . . . . . . . . . . . . . . . 17
⊢ (((-1
∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (-1↑(2
· 𝐾)) =
((-1↑2)↑𝐾)) |
155 | 43, 4, 104, 153, 154 | syl22anc 836 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(2 · 𝐾)) =
((-1↑2)↑𝐾)) |
156 | 108 | oveq1i 7294 |
. . . . . . . . . . . . . . . . 17
⊢
((-1↑2)↑𝐾)
= (1↑𝐾) |
157 | | 1exp 13821 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ ℤ →
(1↑𝐾) =
1) |
158 | 153, 157 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(1↑𝐾) =
1) |
159 | 156, 158 | eqtrid 2791 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑2)↑𝐾) =
1) |
160 | 155, 159 | eqtrd 2779 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑(2 · 𝐾)) =
1) |
161 | 87, 160 | oveq12d 7302 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑(𝑁 + 1)) ·
(-1↑(2 · 𝐾))) =
(-(-1↑𝑁) ·
1)) |
162 | 152, 161 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑((𝑁 + 1) + (2
· 𝐾))) =
(-(-1↑𝑁) ·
1)) |
163 | 126 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑((𝑁 + 1) + (2
· 𝐾))) =
(-1↑((𝑁 + (2 ·
𝐾)) + 1))) |
164 | 11 | negcld 11328 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
-(-1↑𝑁) ∈
ℂ) |
165 | 164 | mulid1d 11001 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-(-1↑𝑁) · 1) =
-(-1↑𝑁)) |
166 | 162, 163,
165 | 3eqtr3d 2787 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-1↑((𝑁 + (2 ·
𝐾)) + 1)) = -(-1↑𝑁)) |
167 | 166 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑((𝑁 + (2 ·
𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = (-(-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) |
168 | 61, 67 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝐾)) + 1)) ∈ ℝ) |
169 | 168 | recnd 11012 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝐾)) + 1)) ∈ ℂ) |
170 | 11, 169 | mulneg1d 11437 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(-(-1↑𝑁) ·
(𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = -((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) |
171 | 148, 167,
170 | 3eqtrd 2783 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝐾)) + 1)) = -((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) |
172 | 171 | oveq2d 7300 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + (𝐹‘((𝑁 + (2 · 𝐾)) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + -((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) |
173 | 10, 168 | remulcld 11014 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(𝐺‘((𝑁 + (2 · 𝐾)) + 1))) ∈ ℝ) |
174 | 173 | recnd 11012 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(𝐺‘((𝑁 + (2 · 𝐾)) + 1))) ∈ ℂ) |
175 | 34, 174 | negsubd 11347 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + -((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) |
176 | 142, 172,
175 | 3eqtrd 2783 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) |
177 | 176 | oveq2d 7300 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) = ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))))) |
178 | 11, 34, 174 | subdid 11440 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))))) |
179 | 113 | oveq1d 7299 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(-1↑𝑁)) ·
(𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = (1 · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) |
180 | 11, 11, 169 | mulassd 11007 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(-1↑𝑁)) ·
(𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) |
181 | 169 | mulid2d 11002 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (1
· (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) |
182 | 179, 180,
181 | 3eqtr3d 2787 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
((-1↑𝑁) ·
(𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) = (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) |
183 | 182 | oveq2d 7300 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) |
184 | 177, 178,
183 | 3eqtrd 2783 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) |
185 | | simp1 1135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 𝜑) |
186 | 5, 12, 19, 120, 121 | iseraltlem1 15402 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑁 + (2 · 𝐾)) + 1) ∈ 𝑍) → 0 ≤ (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) |
187 | 185, 67, 186 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 0 ≤
(𝐺‘((𝑁 + (2 · 𝐾)) + 1))) |
188 | 70, 168 | subge02d 11576 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (0 ≤
(𝐺‘((𝑁 + (2 · 𝐾)) + 1)) ↔ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))))) |
189 | 187, 188 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))))) |
190 | 184, 189 | eqbrtrd 5097 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))))) |
191 | 65, 69, 70, 140, 190 | letrd 11141 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))))) |
192 | 60, 64 | readdcld 11013 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1))) ∈ ℝ) |
193 | 5, 12, 19, 120, 121, 13 | iseraltlem2 15403 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) |
194 | 5, 12, 19, 120, 121 | iseraltlem1 15402 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ 𝑍) → 0 ≤ (𝐺‘(𝑁 + 1))) |
195 | 185, 63, 194 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → 0 ≤
(𝐺‘(𝑁 + 1))) |
196 | 60, 64 | addge01d 11572 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (0 ≤
(𝐺‘(𝑁 + 1)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1))))) |
197 | 195, 196 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘𝑁)) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1)))) |
198 | 70, 60, 192, 193, 197 | letrd 11141 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1)))) |
199 | 70, 60, 64 | absdifled 15155 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((abs‘(((-1↑𝑁)
· (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) ≤ (𝐺‘(𝑁 + 1)) ↔ ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1)))))) |
200 | 191, 198,
199 | mpbir2and 710 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘(((-1↑𝑁)
· (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) ≤ (𝐺‘(𝑁 + 1))) |
201 | 59, 200 | eqbrtrrd 5099 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1))) |
202 | 11, 131, 36 | subdid 11440 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) |
203 | 202 | fveq2d 6787 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((-1↑𝑁)
· ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))) |
204 | 68, 35 | resubcld 11412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ) |
205 | 204 | recnd 11012 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℂ) |
206 | 11, 205 | absmuld 15175 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((-1↑𝑁)
· ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) = ((abs‘(-1↑𝑁)) ·
(abs‘((seq𝑀( + ,
𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))))) |
207 | 203, 206 | eqtr3d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘(((-1↑𝑁)
· (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) = ((abs‘(-1↑𝑁)) ·
(abs‘((seq𝑀( + ,
𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))))) |
208 | 54 | oveq1d 7299 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((abs‘(-1↑𝑁))
· (abs‘((seq𝑀(
+ , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) = (1 · (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))))) |
209 | 205 | abscld 15157 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((seq𝑀( + ,
𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ∈ ℝ) |
210 | 209 | recnd 11012 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((seq𝑀( + ,
𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ∈ ℂ) |
211 | 210 | mulid2d 11002 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → (1
· (abs‘((seq𝑀(
+ , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) |
212 | 207, 208,
211 | 3eqtrd 2783 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘(((-1↑𝑁)
· (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) |
213 | 69, 70, 192, 190, 198 | letrd 11141 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((-1↑𝑁) ·
(seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1)))) |
214 | 69, 60, 64 | absdifled 15155 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((abs‘(((-1↑𝑁)
· (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) ≤ (𝐺‘(𝑁 + 1)) ↔ ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1)))))) |
215 | 140, 213,
214 | mpbir2and 710 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘(((-1↑𝑁)
· (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) ≤ (𝐺‘(𝑁 + 1))) |
216 | 212, 215 | eqbrtrrd 5099 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
(abs‘((seq𝑀( + ,
𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1))) |
217 | 201, 216 | jca 512 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) →
((abs‘((seq𝑀( + ,
𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1)))) |