Step | Hyp | Ref
| Expression |
1 | | neg1rr 12323 |
. . . . . . . . . 10
β’ -1 β
β |
2 | 1 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β -1
β β) |
3 | | neg1ne0 12324 |
. . . . . . . . . 10
β’ -1 β
0 |
4 | 3 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β -1 β
0) |
5 | | iseralt.1 |
. . . . . . . . . . 11
β’ π =
(β€β₯βπ) |
6 | | uzssz 12839 |
. . . . . . . . . . 11
β’
(β€β₯βπ) β β€ |
7 | 5, 6 | eqsstri 4015 |
. . . . . . . . . 10
β’ π β
β€ |
8 | | simp2 1137 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β π β π) |
9 | 7, 8 | sselid 3979 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β π β
β€) |
10 | 2, 4, 9 | reexpclzd 14208 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
(-1βπ) β
β) |
11 | 10 | recnd 11238 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
(-1βπ) β
β) |
12 | | iseralt.2 |
. . . . . . . . . . 11
β’ (π β π β β€) |
13 | | iseralt.6 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β (πΉβπ) = ((-1βπ) Β· (πΊβπ))) |
14 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β -1 β β) |
15 | 3 | a1i 11 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β -1 β 0) |
16 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β π β π) |
17 | 7, 16 | sselid 3979 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β π β β€) |
18 | 14, 15, 17 | reexpclzd 14208 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π) β (-1βπ) β β) |
19 | | iseralt.3 |
. . . . . . . . . . . . . 14
β’ (π β πΊ:πβΆβ) |
20 | 19 | ffvelcdmda 7083 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π) β (πΊβπ) β β) |
21 | 18, 20 | remulcld 11240 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β ((-1βπ) Β· (πΊβπ)) β β) |
22 | 13, 21 | eqeltrd 2833 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β (πΉβπ) β β) |
23 | 5, 12, 22 | serfre 13993 |
. . . . . . . . . 10
β’ (π β seqπ( + , πΉ):πβΆβ) |
24 | 23 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β seqπ( + , πΉ):πβΆβ) |
25 | 8, 5 | eleqtrdi 2843 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β π β
(β€β₯βπ)) |
26 | | 2nn0 12485 |
. . . . . . . . . . . 12
β’ 2 β
β0 |
27 | | simp3 1138 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β πΎ β
β0) |
28 | | nn0mulcl 12504 |
. . . . . . . . . . . 12
β’ ((2
β β0 β§ πΎ β β0) β (2
Β· πΎ) β
β0) |
29 | 26, 27, 28 | sylancr 587 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β (2
Β· πΎ) β
β0) |
30 | | uzaddcl 12884 |
. . . . . . . . . . 11
β’ ((π β
(β€β₯βπ) β§ (2 Β· πΎ) β β0) β (π + (2 Β· πΎ)) β
(β€β₯βπ)) |
31 | 25, 29, 30 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β (π + (2 Β· πΎ)) β
(β€β₯βπ)) |
32 | 31, 5 | eleqtrrdi 2844 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β (π + (2 Β· πΎ)) β π) |
33 | 24, 32 | ffvelcdmd 7084 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β(π + (2 Β· πΎ))) β β) |
34 | 33 | recnd 11238 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β(π + (2 Β· πΎ))) β β) |
35 | 24, 8 | ffvelcdmd 7084 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)βπ) β β) |
36 | 35 | recnd 11238 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)βπ) β β) |
37 | 11, 34, 36 | subdid 11666 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ))) = (((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) |
38 | 37 | fveq2d 6892 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((-1βπ)
Β· ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ)))) = (absβ(((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ))))) |
39 | 33, 35 | resubcld 11638 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ)) β β) |
40 | 39 | recnd 11238 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ)) β β) |
41 | 11, 40 | absmuld 15397 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((-1βπ)
Β· ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ)))) = ((absβ(-1βπ)) Β·
(absβ((seqπ( + ,
πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ))))) |
42 | 38, 41 | eqtr3d 2774 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ(((-1βπ)
Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) = ((absβ(-1βπ)) Β·
(absβ((seqπ( + ,
πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ))))) |
43 | 2 | recnd 11238 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β -1
β β) |
44 | | absexpz 15248 |
. . . . . . 7
β’ ((-1
β β β§ -1 β 0 β§ π β β€) β
(absβ(-1βπ)) =
((absβ-1)βπ)) |
45 | 43, 4, 9, 44 | syl3anc 1371 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ(-1βπ)) =
((absβ-1)βπ)) |
46 | | ax-1cn 11164 |
. . . . . . . . . 10
β’ 1 β
β |
47 | 46 | absnegi 15343 |
. . . . . . . . 9
β’
(absβ-1) = (absβ1) |
48 | | abs1 15240 |
. . . . . . . . 9
β’
(absβ1) = 1 |
49 | 47, 48 | eqtri 2760 |
. . . . . . . 8
β’
(absβ-1) = 1 |
50 | 49 | oveq1i 7415 |
. . . . . . 7
β’
((absβ-1)βπ) = (1βπ) |
51 | | 1exp 14053 |
. . . . . . . 8
β’ (π β β€ β
(1βπ) =
1) |
52 | 9, 51 | syl 17 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
(1βπ) =
1) |
53 | 50, 52 | eqtrid 2784 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((absβ-1)βπ) =
1) |
54 | 45, 53 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ(-1βπ)) =
1) |
55 | 54 | oveq1d 7420 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
((absβ(-1βπ))
Β· (absβ((seqπ(
+ , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ)))) = (1 Β· (absβ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ))))) |
56 | 40 | abscld 15379 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((seqπ( + ,
πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ))) β β) |
57 | 56 | recnd 11238 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((seqπ( + ,
πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ))) β β) |
58 | 57 | mullidd 11228 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β (1
Β· (absβ((seqπ(
+ , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ)))) = (absβ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ)))) |
59 | 42, 55, 58 | 3eqtrd 2776 |
. . 3
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ(((-1βπ)
Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) = (absβ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ)))) |
60 | 10, 35 | remulcld 11240 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)βπ)) β β) |
61 | 19 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β πΊ:πβΆβ) |
62 | 5 | peano2uzs 12882 |
. . . . . . . 8
β’ (π β π β (π + 1) β π) |
63 | 62 | 3ad2ant2 1134 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β (π + 1) β π) |
64 | 61, 63 | ffvelcdmd 7084 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β (πΊβ(π + 1)) β β) |
65 | 60, 64 | resubcld 11638 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(seqπ( + , πΉ)βπ)) β (πΊβ(π + 1))) β β) |
66 | 5 | peano2uzs 12882 |
. . . . . . . 8
β’ ((π + (2 Β· πΎ)) β π β ((π + (2 Β· πΎ)) + 1) β π) |
67 | 32, 66 | syl 17 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β ((π + (2 Β· πΎ)) + 1) β π) |
68 | 24, 67 | ffvelcdmd 7084 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β β) |
69 | 10, 68 | remulcld 11240 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β β) |
70 | 10, 33 | remulcld 11240 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β β) |
71 | | seqp1 13977 |
. . . . . . . . . . 11
β’ (π β
(β€β₯βπ) β (seqπ( + , πΉ)β(π + 1)) = ((seqπ( + , πΉ)βπ) + (πΉβ(π + 1)))) |
72 | 25, 71 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β(π + 1)) = ((seqπ( + , πΉ)βπ) + (πΉβ(π + 1)))) |
73 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π = (π + 1) β (πΉβπ) = (πΉβ(π + 1))) |
74 | | oveq2 7413 |
. . . . . . . . . . . . . 14
β’ (π = (π + 1) β (-1βπ) = (-1β(π + 1))) |
75 | | fveq2 6888 |
. . . . . . . . . . . . . 14
β’ (π = (π + 1) β (πΊβπ) = (πΊβ(π + 1))) |
76 | 74, 75 | oveq12d 7423 |
. . . . . . . . . . . . 13
β’ (π = (π + 1) β ((-1βπ) Β· (πΊβπ)) = ((-1β(π + 1)) Β· (πΊβ(π + 1)))) |
77 | 73, 76 | eqeq12d 2748 |
. . . . . . . . . . . 12
β’ (π = (π + 1) β ((πΉβπ) = ((-1βπ) Β· (πΊβπ)) β (πΉβ(π + 1)) = ((-1β(π + 1)) Β· (πΊβ(π + 1))))) |
78 | 13 | ralrimiva 3146 |
. . . . . . . . . . . . 13
β’ (π β βπ β π (πΉβπ) = ((-1βπ) Β· (πΊβπ))) |
79 | 78 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β
βπ β π (πΉβπ) = ((-1βπ) Β· (πΊβπ))) |
80 | 77, 79, 63 | rspcdva 3613 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β (πΉβ(π + 1)) = ((-1β(π + 1)) Β· (πΊβ(π + 1)))) |
81 | 80 | oveq2d 7421 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)βπ) + (πΉβ(π + 1))) = ((seqπ( + , πΉ)βπ) + ((-1β(π + 1)) Β· (πΊβ(π + 1))))) |
82 | 43, 4, 9 | expp1zd 14116 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(π + 1)) =
((-1βπ) Β·
-1)) |
83 | | neg1cn 12322 |
. . . . . . . . . . . . . . 15
β’ -1 β
β |
84 | | mulcom 11192 |
. . . . . . . . . . . . . . 15
β’
(((-1βπ) β
β β§ -1 β β) β ((-1βπ) Β· -1) = (-1 Β· (-1βπ))) |
85 | 11, 83, 84 | sylancl 586 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β· -1) =
(-1 Β· (-1βπ))) |
86 | 11 | mulm1d 11662 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ πΎ β β0) β (-1
Β· (-1βπ)) =
-(-1βπ)) |
87 | 82, 85, 86 | 3eqtrd 2776 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(π + 1)) =
-(-1βπ)) |
88 | 87 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β
((-1β(π + 1)) Β·
(πΊβ(π + 1))) = (-(-1βπ) Β· (πΊβ(π + 1)))) |
89 | 64 | recnd 11238 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ πΎ β β0) β (πΊβ(π + 1)) β β) |
90 | 11, 89 | mulneg1d 11663 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β
(-(-1βπ) Β·
(πΊβ(π + 1))) = -((-1βπ) Β· (πΊβ(π + 1)))) |
91 | 88, 90 | eqtrd 2772 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β
((-1β(π + 1)) Β·
(πΊβ(π + 1))) = -((-1βπ) Β· (πΊβ(π + 1)))) |
92 | 91 | oveq2d 7421 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)βπ) + ((-1β(π + 1)) Β· (πΊβ(π + 1)))) = ((seqπ( + , πΉ)βπ) + -((-1βπ) Β· (πΊβ(π + 1))))) |
93 | 72, 81, 92 | 3eqtrd 2776 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β(π + 1)) = ((seqπ( + , πΉ)βπ) + -((-1βπ) Β· (πΊβ(π + 1))))) |
94 | 10, 64 | remulcld 11240 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(πΊβ(π + 1))) β β) |
95 | 94 | recnd 11238 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(πΊβ(π + 1))) β β) |
96 | 36, 95 | negsubd 11573 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)βπ) + -((-1βπ) Β· (πΊβ(π + 1)))) = ((seqπ( + , πΉ)βπ) β ((-1βπ) Β· (πΊβ(π + 1))))) |
97 | 93, 96 | eqtrd 2772 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β(π + 1)) = ((seqπ( + , πΉ)βπ) β ((-1βπ) Β· (πΊβ(π + 1))))) |
98 | 97 | oveq2d 7421 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β(π + 1))) = ((-1βπ) Β· ((seqπ( + , πΉ)βπ) β ((-1βπ) Β· (πΊβ(π + 1)))))) |
99 | 11, 36, 95 | subdid 11666 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
((seqπ( + , πΉ)βπ) β ((-1βπ) Β· (πΊβ(π + 1))))) = (((-1βπ) Β· (seqπ( + , πΉ)βπ)) β ((-1βπ) Β· ((-1βπ) Β· (πΊβ(π + 1)))))) |
100 | 9 | zcnd 12663 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π β§ πΎ β β0) β π β
β) |
101 | 100 | 2timesd 12451 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ πΎ β β0) β (2
Β· π) = (π + π)) |
102 | 101 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(2 Β· π)) =
(-1β(π + π))) |
103 | | 2z 12590 |
. . . . . . . . . . . . . . 15
β’ 2 β
β€ |
104 | 103 | a1i 11 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ πΎ β β0) β 2 β
β€) |
105 | | expmulz 14070 |
. . . . . . . . . . . . . 14
β’ (((-1
β β β§ -1 β 0) β§ (2 β β€ β§ π β β€)) β (-1β(2
Β· π)) =
((-1β2)βπ)) |
106 | 43, 4, 104, 9, 105 | syl22anc 837 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(2 Β· π)) =
((-1β2)βπ)) |
107 | 102, 106 | eqtr3d 2774 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(π + π)) = ((-1β2)βπ)) |
108 | | neg1sqe1 14156 |
. . . . . . . . . . . . 13
β’
(-1β2) = 1 |
109 | 108 | oveq1i 7415 |
. . . . . . . . . . . 12
β’
((-1β2)βπ)
= (1βπ) |
110 | 107, 109 | eqtrdi 2788 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(π + π)) = (1βπ)) |
111 | | expaddz 14068 |
. . . . . . . . . . . 12
β’ (((-1
β β β§ -1 β 0) β§ (π β β€ β§ π β β€)) β (-1β(π + π)) = ((-1βπ) Β· (-1βπ))) |
112 | 43, 4, 9, 9, 111 | syl22anc 837 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(π + π)) = ((-1βπ) Β· (-1βπ))) |
113 | 110, 112,
52 | 3eqtr3d 2780 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(-1βπ)) =
1) |
114 | 113 | oveq1d 7420 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(-1βπ)) Β·
(πΊβ(π + 1))) = (1 Β· (πΊβ(π + 1)))) |
115 | 11, 11, 89 | mulassd 11233 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(-1βπ)) Β·
(πΊβ(π + 1))) = ((-1βπ) Β· ((-1βπ) Β· (πΊβ(π + 1))))) |
116 | 89 | mullidd 11228 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β (1
Β· (πΊβ(π + 1))) = (πΊβ(π + 1))) |
117 | 114, 115,
116 | 3eqtr3d 2780 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
((-1βπ) Β·
(πΊβ(π + 1)))) = (πΊβ(π + 1))) |
118 | 117 | oveq2d 7421 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(seqπ( + , πΉ)βπ)) β ((-1βπ) Β· ((-1βπ) Β· (πΊβ(π + 1))))) = (((-1βπ) Β· (seqπ( + , πΉ)βπ)) β (πΊβ(π + 1)))) |
119 | 98, 99, 118 | 3eqtrd 2776 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β(π + 1))) = (((-1βπ) Β· (seqπ( + , πΉ)βπ)) β (πΊβ(π + 1)))) |
120 | | iseralt.4 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β (πΊβ(π + 1)) β€ (πΊβπ)) |
121 | | iseralt.5 |
. . . . . . . . . . 11
β’ (π β πΊ β 0) |
122 | 5, 12, 19, 120, 121, 13 | iseraltlem2 15625 |
. . . . . . . . . 10
β’ ((π β§ (π + 1) β π β§ πΎ β β0) β
((-1β(π + 1)) Β·
(seqπ( + , πΉ)β((π + 1) + (2 Β· πΎ)))) β€ ((-1β(π + 1)) Β· (seqπ( + , πΉ)β(π + 1)))) |
123 | 62, 122 | syl3an2 1164 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
((-1β(π + 1)) Β·
(seqπ( + , πΉ)β((π + 1) + (2 Β· πΎ)))) β€ ((-1β(π + 1)) Β· (seqπ( + , πΉ)β(π + 1)))) |
124 | | 1cnd 11205 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β 1 β
β) |
125 | 29 | nn0cnd 12530 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β (2
Β· πΎ) β
β) |
126 | 100, 124,
125 | add32d 11437 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β ((π + 1) + (2 Β· πΎ)) = ((π + (2 Β· πΎ)) + 1)) |
127 | 126 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β((π + 1) + (2 Β· πΎ))) = (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) |
128 | 87, 127 | oveq12d 7423 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
((-1β(π + 1)) Β·
(seqπ( + , πΉ)β((π + 1) + (2 Β· πΎ)))) = (-(-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)))) |
129 | 87 | oveq1d 7420 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
((-1β(π + 1)) Β·
(seqπ( + , πΉ)β(π + 1))) = (-(-1βπ) Β· (seqπ( + , πΉ)β(π + 1)))) |
130 | 123, 128,
129 | 3brtr3d 5178 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
(-(-1βπ) Β·
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β€ (-(-1βπ) Β· (seqπ( + , πΉ)β(π + 1)))) |
131 | 68 | recnd 11238 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β β) |
132 | 11, 131 | mulneg1d 11663 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
(-(-1βπ) Β·
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) = -((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)))) |
133 | 24, 63 | ffvelcdmd 7084 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β(π + 1)) β β) |
134 | 133 | recnd 11238 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β(π + 1)) β β) |
135 | 11, 134 | mulneg1d 11663 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
(-(-1βπ) Β·
(seqπ( + , πΉ)β(π + 1))) = -((-1βπ) Β· (seqπ( + , πΉ)β(π + 1)))) |
136 | 130, 132,
135 | 3brtr3d 5178 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
-((-1βπ) Β·
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β€ -((-1βπ) Β· (seqπ( + , πΉ)β(π + 1)))) |
137 | 10, 133 | remulcld 11240 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β(π + 1))) β β) |
138 | 137, 69 | lenegd 11789 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(seqπ( + , πΉ)β(π + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β -((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β€ -((-1βπ) Β· (seqπ( + , πΉ)β(π + 1))))) |
139 | 136, 138 | mpbird 256 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β(π + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)))) |
140 | 119, 139 | eqbrtrrd 5171 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(seqπ( + , πΉ)βπ)) β (πΊβ(π + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)))) |
141 | | seqp1 13977 |
. . . . . . . . . 10
β’ ((π + (2 Β· πΎ)) β
(β€β₯βπ) β (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) = ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) + (πΉβ((π + (2 Β· πΎ)) + 1)))) |
142 | 31, 141 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) = ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) + (πΉβ((π + (2 Β· πΎ)) + 1)))) |
143 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π = ((π + (2 Β· πΎ)) + 1) β (πΉβπ) = (πΉβ((π + (2 Β· πΎ)) + 1))) |
144 | | oveq2 7413 |
. . . . . . . . . . . . . 14
β’ (π = ((π + (2 Β· πΎ)) + 1) β (-1βπ) = (-1β((π + (2 Β· πΎ)) + 1))) |
145 | | fveq2 6888 |
. . . . . . . . . . . . . 14
β’ (π = ((π + (2 Β· πΎ)) + 1) β (πΊβπ) = (πΊβ((π + (2 Β· πΎ)) + 1))) |
146 | 144, 145 | oveq12d 7423 |
. . . . . . . . . . . . 13
β’ (π = ((π + (2 Β· πΎ)) + 1) β ((-1βπ) Β· (πΊβπ)) = ((-1β((π + (2 Β· πΎ)) + 1)) Β· (πΊβ((π + (2 Β· πΎ)) + 1)))) |
147 | 143, 146 | eqeq12d 2748 |
. . . . . . . . . . . 12
β’ (π = ((π + (2 Β· πΎ)) + 1) β ((πΉβπ) = ((-1βπ) Β· (πΊβπ)) β (πΉβ((π + (2 Β· πΎ)) + 1)) = ((-1β((π + (2 Β· πΎ)) + 1)) Β· (πΊβ((π + (2 Β· πΎ)) + 1))))) |
148 | 147, 79, 67 | rspcdva 3613 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β (πΉβ((π + (2 Β· πΎ)) + 1)) = ((-1β((π + (2 Β· πΎ)) + 1)) Β· (πΊβ((π + (2 Β· πΎ)) + 1)))) |
149 | 7, 63 | sselid 3979 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π β§ πΎ β β0) β (π + 1) β
β€) |
150 | 29 | nn0zd 12580 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π β§ πΎ β β0) β (2
Β· πΎ) β
β€) |
151 | | expaddz 14068 |
. . . . . . . . . . . . . . 15
β’ (((-1
β β β§ -1 β 0) β§ ((π + 1) β β€ β§ (2 Β· πΎ) β β€)) β
(-1β((π + 1) + (2
Β· πΎ))) =
((-1β(π + 1)) Β·
(-1β(2 Β· πΎ)))) |
152 | 43, 4, 149, 150, 151 | syl22anc 837 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β((π + 1) + (2
Β· πΎ))) =
((-1β(π + 1)) Β·
(-1β(2 Β· πΎ)))) |
153 | 27 | nn0zd 12580 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π β§ πΎ β β0) β πΎ β
β€) |
154 | | expmulz 14070 |
. . . . . . . . . . . . . . . . 17
β’ (((-1
β β β§ -1 β 0) β§ (2 β β€ β§ πΎ β β€)) β (-1β(2
Β· πΎ)) =
((-1β2)βπΎ)) |
155 | 43, 4, 104, 153, 154 | syl22anc 837 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(2 Β· πΎ)) =
((-1β2)βπΎ)) |
156 | 108 | oveq1i 7415 |
. . . . . . . . . . . . . . . . 17
β’
((-1β2)βπΎ)
= (1βπΎ) |
157 | | 1exp 14053 |
. . . . . . . . . . . . . . . . . 18
β’ (πΎ β β€ β
(1βπΎ) =
1) |
158 | 153, 157 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π β§ πΎ β β0) β
(1βπΎ) =
1) |
159 | 156, 158 | eqtrid 2784 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π β§ πΎ β β0) β
((-1β2)βπΎ) =
1) |
160 | 155, 159 | eqtrd 2772 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β(2 Β· πΎ)) =
1) |
161 | 87, 160 | oveq12d 7423 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ πΎ β β0) β
((-1β(π + 1)) Β·
(-1β(2 Β· πΎ))) =
(-(-1βπ) Β·
1)) |
162 | 152, 161 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β((π + 1) + (2
Β· πΎ))) =
(-(-1βπ) Β·
1)) |
163 | 126 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β((π + 1) + (2
Β· πΎ))) =
(-1β((π + (2 Β·
πΎ)) + 1))) |
164 | 11 | negcld 11554 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ πΎ β β0) β
-(-1βπ) β
β) |
165 | 164 | mulridd 11227 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ πΎ β β0) β
(-(-1βπ) Β· 1) =
-(-1βπ)) |
166 | 162, 163,
165 | 3eqtr3d 2780 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β
(-1β((π + (2 Β·
πΎ)) + 1)) = -(-1βπ)) |
167 | 166 | oveq1d 7420 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β
((-1β((π + (2 Β·
πΎ)) + 1)) Β· (πΊβ((π + (2 Β· πΎ)) + 1))) = (-(-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1)))) |
168 | 61, 67 | ffvelcdmd 7084 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ πΎ β β0) β (πΊβ((π + (2 Β· πΎ)) + 1)) β β) |
169 | 168 | recnd 11238 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ πΎ β β0) β (πΊβ((π + (2 Β· πΎ)) + 1)) β β) |
170 | 11, 169 | mulneg1d 11663 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β
(-(-1βπ) Β·
(πΊβ((π + (2 Β· πΎ)) + 1))) = -((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1)))) |
171 | 148, 167,
170 | 3eqtrd 2776 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β (πΉβ((π + (2 Β· πΎ)) + 1)) = -((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1)))) |
172 | 171 | oveq2d 7421 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)β(π + (2 Β· πΎ))) + (πΉβ((π + (2 Β· πΎ)) + 1))) = ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) + -((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1))))) |
173 | 10, 168 | remulcld 11240 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(πΊβ((π + (2 Β· πΎ)) + 1))) β β) |
174 | 173 | recnd 11238 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(πΊβ((π + (2 Β· πΎ)) + 1))) β β) |
175 | 34, 174 | negsubd 11573 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)β(π + (2 Β· πΎ))) + -((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1)))) = ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β ((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1))))) |
176 | 142, 172,
175 | 3eqtrd 2776 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) = ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β ((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1))))) |
177 | 176 | oveq2d 7421 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) = ((-1βπ) Β· ((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β ((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1)))))) |
178 | 11, 34, 174 | subdid 11666 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
((seqπ( + , πΉ)β(π + (2 Β· πΎ))) β ((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1))))) = (((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β ((-1βπ) Β· ((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1)))))) |
179 | 113 | oveq1d 7420 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(-1βπ)) Β·
(πΊβ((π + (2 Β· πΎ)) + 1))) = (1 Β· (πΊβ((π + (2 Β· πΎ)) + 1)))) |
180 | 11, 11, 169 | mulassd 11233 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(-1βπ)) Β·
(πΊβ((π + (2 Β· πΎ)) + 1))) = ((-1βπ) Β· ((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1))))) |
181 | 169 | mullidd 11228 |
. . . . . . . . 9
β’ ((π β§ π β π β§ πΎ β β0) β (1
Β· (πΊβ((π + (2 Β· πΎ)) + 1))) = (πΊβ((π + (2 Β· πΎ)) + 1))) |
182 | 179, 180,
181 | 3eqtr3d 2780 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
((-1βπ) Β·
(πΊβ((π + (2 Β· πΎ)) + 1)))) = (πΊβ((π + (2 Β· πΎ)) + 1))) |
183 | 182 | oveq2d 7421 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β ((-1βπ) Β· ((-1βπ) Β· (πΊβ((π + (2 Β· πΎ)) + 1))))) = (((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β (πΊβ((π + (2 Β· πΎ)) + 1)))) |
184 | 177, 178,
183 | 3eqtrd 2776 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) = (((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β (πΊβ((π + (2 Β· πΎ)) + 1)))) |
185 | | simp1 1136 |
. . . . . . . 8
β’ ((π β§ π β π β§ πΎ β β0) β π) |
186 | 5, 12, 19, 120, 121 | iseraltlem1 15624 |
. . . . . . . 8
β’ ((π β§ ((π + (2 Β· πΎ)) + 1) β π) β 0 β€ (πΊβ((π + (2 Β· πΎ)) + 1))) |
187 | 185, 67, 186 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β 0 β€
(πΊβ((π + (2 Β· πΎ)) + 1))) |
188 | 70, 168 | subge02d 11802 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β (0 β€
(πΊβ((π + (2 Β· πΎ)) + 1)) β (((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β (πΊβ((π + (2 Β· πΎ)) + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))))) |
189 | 187, 188 | mpbid 231 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β (πΊβ((π + (2 Β· πΎ)) + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ))))) |
190 | 184, 189 | eqbrtrd 5169 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ))))) |
191 | 65, 69, 70, 140, 190 | letrd 11367 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(seqπ( + , πΉ)βπ)) β (πΊβ(π + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ))))) |
192 | 60, 64 | readdcld 11239 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(((-1βπ) Β·
(seqπ( + , πΉ)βπ)) + (πΊβ(π + 1))) β β) |
193 | 5, 12, 19, 120, 121, 13 | iseraltlem2 15625 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β€ ((-1βπ) Β· (seqπ( + , πΉ)βπ))) |
194 | 5, 12, 19, 120, 121 | iseraltlem1 15624 |
. . . . . . 7
β’ ((π β§ (π + 1) β π) β 0 β€ (πΊβ(π + 1))) |
195 | 185, 63, 194 | syl2anc 584 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β 0 β€
(πΊβ(π + 1))) |
196 | 60, 64 | addge01d 11798 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β (0 β€
(πΊβ(π + 1)) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)) β€ (((-1βπ) Β· (seqπ( + , πΉ)βπ)) + (πΊβ(π + 1))))) |
197 | 195, 196 | mpbid 231 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)βπ)) β€ (((-1βπ) Β· (seqπ( + , πΉ)βπ)) + (πΊβ(π + 1)))) |
198 | 70, 60, 192, 193, 197 | letrd 11367 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β€ (((-1βπ) Β· (seqπ( + , πΉ)βπ)) + (πΊβ(π + 1)))) |
199 | 70, 60, 64 | absdifled 15377 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
((absβ(((-1βπ)
Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) β€ (πΊβ(π + 1)) β ((((-1βπ) Β· (seqπ( + , πΉ)βπ)) β (πΊβ(π + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β§ ((-1βπ) Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β€ (((-1βπ) Β· (seqπ( + , πΉ)βπ)) + (πΊβ(π + 1)))))) |
200 | 191, 198,
199 | mpbir2and 711 |
. . 3
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ(((-1βπ)
Β· (seqπ( + , πΉ)β(π + (2 Β· πΎ)))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) β€ (πΊβ(π + 1))) |
201 | 59, 200 | eqbrtrrd 5171 |
. 2
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((seqπ( + ,
πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ))) β€ (πΊβ(π + 1))) |
202 | 11, 131, 36 | subdid 11666 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ))) = (((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) |
203 | 202 | fveq2d 6892 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((-1βπ)
Β· ((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ)))) = (absβ(((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ))))) |
204 | 68, 35 | resubcld 11638 |
. . . . . . 7
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ)) β β) |
205 | 204 | recnd 11238 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ)) β β) |
206 | 11, 205 | absmuld 15397 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((-1βπ)
Β· ((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ)))) = ((absβ(-1βπ)) Β·
(absβ((seqπ( + ,
πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ))))) |
207 | 203, 206 | eqtr3d 2774 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ(((-1βπ)
Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) = ((absβ(-1βπ)) Β·
(absβ((seqπ( + ,
πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ))))) |
208 | 54 | oveq1d 7420 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
((absβ(-1βπ))
Β· (absβ((seqπ(
+ , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ)))) = (1 Β· (absβ((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ))))) |
209 | 205 | abscld 15379 |
. . . . . 6
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((seqπ( + ,
πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ))) β β) |
210 | 209 | recnd 11238 |
. . . . 5
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((seqπ( + ,
πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ))) β β) |
211 | 210 | mullidd 11228 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β (1
Β· (absβ((seqπ(
+ , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ)))) = (absβ((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ)))) |
212 | 207, 208,
211 | 3eqtrd 2776 |
. . 3
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ(((-1βπ)
Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) = (absβ((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ)))) |
213 | 69, 70, 192, 190, 198 | letrd 11367 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
((-1βπ) Β·
(seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β€ (((-1βπ) Β· (seqπ( + , πΉ)βπ)) + (πΊβ(π + 1)))) |
214 | 69, 60, 64 | absdifled 15377 |
. . . 4
β’ ((π β§ π β π β§ πΎ β β0) β
((absβ(((-1βπ)
Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) β€ (πΊβ(π + 1)) β ((((-1βπ) Β· (seqπ( + , πΉ)βπ)) β (πΊβ(π + 1))) β€ ((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β§ ((-1βπ) Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β€ (((-1βπ) Β· (seqπ( + , πΉ)βπ)) + (πΊβ(π + 1)))))) |
215 | 140, 213,
214 | mpbir2and 711 |
. . 3
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ(((-1βπ)
Β· (seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1))) β ((-1βπ) Β· (seqπ( + , πΉ)βπ)))) β€ (πΊβ(π + 1))) |
216 | 212, 215 | eqbrtrrd 5171 |
. 2
β’ ((π β§ π β π β§ πΎ β β0) β
(absβ((seqπ( + ,
πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ))) β€ (πΊβ(π + 1))) |
217 | 201, 216 | jca 512 |
1
β’ ((π β§ π β π β§ πΎ β β0) β
((absβ((seqπ( + ,
πΉ)β(π + (2 Β· πΎ))) β (seqπ( + , πΉ)βπ))) β€ (πΊβ(π + 1)) β§ (absβ((seqπ( + , πΉ)β((π + (2 Β· πΎ)) + 1)) β (seqπ( + , πΉ)βπ))) β€ (πΊβ(π + 1)))) |