MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpaddnn Structured version   Visualization version   GIF version

Theorem relexpaddnn 15100
Description: Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpaddnn ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))

Proof of Theorem relexpaddnn
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
21coeq1d 5886 . . . . 5 (𝑛 = 1 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)))
3 oveq1 7455 . . . . . 6 (𝑛 = 1 → (𝑛 + 𝑀) = (1 + 𝑀))
43oveq2d 7464 . . . . 5 (𝑛 = 1 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(1 + 𝑀)))
52, 4eqeq12d 2756 . . . 4 (𝑛 = 1 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀))))
65imbi2d 340 . . 3 (𝑛 = 1 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀)))))
7 oveq2 7456 . . . . . 6 (𝑛 = 𝑘 → (𝑅𝑟𝑛) = (𝑅𝑟𝑘))
87coeq1d 5886 . . . . 5 (𝑛 = 𝑘 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)))
9 oveq1 7455 . . . . . 6 (𝑛 = 𝑘 → (𝑛 + 𝑀) = (𝑘 + 𝑀))
109oveq2d 7464 . . . . 5 (𝑛 = 𝑘 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))
118, 10eqeq12d 2756 . . . 4 (𝑛 = 𝑘 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))))
1211imbi2d 340 . . 3 (𝑛 = 𝑘 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))))
13 oveq2 7456 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑘 + 1)))
1413coeq1d 5886 . . . . 5 (𝑛 = (𝑘 + 1) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)))
15 oveq1 7455 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑛 + 𝑀) = ((𝑘 + 1) + 𝑀))
1615oveq2d 7464 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
1714, 16eqeq12d 2756 . . . 4 (𝑛 = (𝑘 + 1) → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀))))
1817imbi2d 340 . . 3 (𝑛 = (𝑘 + 1) → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
19 oveq2 7456 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2019coeq1d 5886 . . . . 5 (𝑛 = 𝑁 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)))
21 oveq1 7455 . . . . . 6 (𝑛 = 𝑁 → (𝑛 + 𝑀) = (𝑁 + 𝑀))
2221oveq2d 7464 . . . . 5 (𝑛 = 𝑁 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
2320, 22eqeq12d 2756 . . . 4 (𝑛 = 𝑁 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
2423imbi2d 340 . . 3 (𝑛 = 𝑁 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))))
25 relexp1g 15075 . . . . . 6 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2625adantl 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
2726coeq1d 5886 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ (𝑅𝑟𝑀)))
28 relexpsucnnl 15079 . . . . 5 ((𝑅𝑉𝑀 ∈ ℕ) → (𝑅𝑟(𝑀 + 1)) = (𝑅 ∘ (𝑅𝑟𝑀)))
2928ancoms 458 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑀 + 1)) = (𝑅 ∘ (𝑅𝑟𝑀)))
30 simpl 482 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 𝑀 ∈ ℕ)
3130nncnd 12309 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 𝑀 ∈ ℂ)
32 1cnd 11285 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 1 ∈ ℂ)
3331, 32addcomd 11492 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑀 + 1) = (1 + 𝑀))
3433oveq2d 7464 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑀 + 1)) = (𝑅𝑟(1 + 𝑀)))
3527, 29, 343eqtr2d 2786 . . 3 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀)))
36 simp2r 1200 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑅𝑉)
37 simp1 1136 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑘 ∈ ℕ)
38 relexpsucnnl 15079 . . . . . . . . 9 ((𝑅𝑉𝑘 ∈ ℕ) → (𝑅𝑟(𝑘 + 1)) = (𝑅 ∘ (𝑅𝑟𝑘)))
3936, 37, 38syl2anc 583 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟(𝑘 + 1)) = (𝑅 ∘ (𝑅𝑟𝑘)))
4039coeq1d 5886 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = ((𝑅 ∘ (𝑅𝑟𝑘)) ∘ (𝑅𝑟𝑀)))
41 coass 6296 . . . . . . 7 ((𝑅 ∘ (𝑅𝑟𝑘)) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)))
4240, 41eqtrdi 2796 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀))))
43 simp3 1138 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))
4443coeq2d 5887 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀))) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
4537nncnd 12309 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑘 ∈ ℂ)
46 1cnd 11285 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 1 ∈ ℂ)
47313ad2ant2 1134 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑀 ∈ ℂ)
4845, 46, 47add32d 11517 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑘 + 1) + 𝑀) = ((𝑘 + 𝑀) + 1))
4948oveq2d 7464 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟((𝑘 + 1) + 𝑀)) = (𝑅𝑟((𝑘 + 𝑀) + 1)))
50303ad2ant2 1134 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑀 ∈ ℕ)
5137, 50nnaddcld 12345 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑘 + 𝑀) ∈ ℕ)
52 relexpsucnnl 15079 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑘 + 𝑀) ∈ ℕ) → (𝑅𝑟((𝑘 + 𝑀) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
5336, 51, 52syl2anc 583 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟((𝑘 + 𝑀) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
5449, 53eqtr2d 2781 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
5542, 44, 543eqtrd 2784 . . . . 5 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
56553exp 1119 . . . 4 (𝑘 ∈ ℕ → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
5756a2d 29 . . 3 (𝑘 ∈ ℕ → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
586, 12, 18, 24, 35, 57nnind 12311 . 2 (𝑁 ∈ ℕ → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
59583impib 1116 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  ccom 5704  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187  cn 12293  𝑟crelexp 15068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-relexp 15069
This theorem is referenced by:  relexpaddg  15102  iunrelexpmin1  43670  relexpmulnn  43671  iunrelexpmin2  43674  relexpaddss  43680
  Copyright terms: Public domain W3C validator