MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpaddnn Structured version   Visualization version   GIF version

Theorem relexpaddnn 15017
Description: Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpaddnn ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))

Proof of Theorem relexpaddnn
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
21coeq1d 5825 . . . . 5 (𝑛 = 1 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)))
3 oveq1 7394 . . . . . 6 (𝑛 = 1 → (𝑛 + 𝑀) = (1 + 𝑀))
43oveq2d 7403 . . . . 5 (𝑛 = 1 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(1 + 𝑀)))
52, 4eqeq12d 2745 . . . 4 (𝑛 = 1 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀))))
65imbi2d 340 . . 3 (𝑛 = 1 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀)))))
7 oveq2 7395 . . . . . 6 (𝑛 = 𝑘 → (𝑅𝑟𝑛) = (𝑅𝑟𝑘))
87coeq1d 5825 . . . . 5 (𝑛 = 𝑘 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)))
9 oveq1 7394 . . . . . 6 (𝑛 = 𝑘 → (𝑛 + 𝑀) = (𝑘 + 𝑀))
109oveq2d 7403 . . . . 5 (𝑛 = 𝑘 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))
118, 10eqeq12d 2745 . . . 4 (𝑛 = 𝑘 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))))
1211imbi2d 340 . . 3 (𝑛 = 𝑘 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))))
13 oveq2 7395 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑘 + 1)))
1413coeq1d 5825 . . . . 5 (𝑛 = (𝑘 + 1) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)))
15 oveq1 7394 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑛 + 𝑀) = ((𝑘 + 1) + 𝑀))
1615oveq2d 7403 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
1714, 16eqeq12d 2745 . . . 4 (𝑛 = (𝑘 + 1) → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀))))
1817imbi2d 340 . . 3 (𝑛 = (𝑘 + 1) → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
19 oveq2 7395 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2019coeq1d 5825 . . . . 5 (𝑛 = 𝑁 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)))
21 oveq1 7394 . . . . . 6 (𝑛 = 𝑁 → (𝑛 + 𝑀) = (𝑁 + 𝑀))
2221oveq2d 7403 . . . . 5 (𝑛 = 𝑁 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
2320, 22eqeq12d 2745 . . . 4 (𝑛 = 𝑁 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
2423imbi2d 340 . . 3 (𝑛 = 𝑁 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))))
25 relexp1g 14992 . . . . . 6 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2625adantl 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
2726coeq1d 5825 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ (𝑅𝑟𝑀)))
28 relexpsucnnl 14996 . . . . 5 ((𝑅𝑉𝑀 ∈ ℕ) → (𝑅𝑟(𝑀 + 1)) = (𝑅 ∘ (𝑅𝑟𝑀)))
2928ancoms 458 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑀 + 1)) = (𝑅 ∘ (𝑅𝑟𝑀)))
30 simpl 482 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 𝑀 ∈ ℕ)
3130nncnd 12202 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 𝑀 ∈ ℂ)
32 1cnd 11169 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 1 ∈ ℂ)
3331, 32addcomd 11376 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑀 + 1) = (1 + 𝑀))
3433oveq2d 7403 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑀 + 1)) = (𝑅𝑟(1 + 𝑀)))
3527, 29, 343eqtr2d 2770 . . 3 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀)))
36 simp2r 1201 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑅𝑉)
37 simp1 1136 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑘 ∈ ℕ)
38 relexpsucnnl 14996 . . . . . . . . 9 ((𝑅𝑉𝑘 ∈ ℕ) → (𝑅𝑟(𝑘 + 1)) = (𝑅 ∘ (𝑅𝑟𝑘)))
3936, 37, 38syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟(𝑘 + 1)) = (𝑅 ∘ (𝑅𝑟𝑘)))
4039coeq1d 5825 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = ((𝑅 ∘ (𝑅𝑟𝑘)) ∘ (𝑅𝑟𝑀)))
41 coass 6238 . . . . . . 7 ((𝑅 ∘ (𝑅𝑟𝑘)) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)))
4240, 41eqtrdi 2780 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀))))
43 simp3 1138 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))
4443coeq2d 5826 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀))) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
4537nncnd 12202 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑘 ∈ ℂ)
46 1cnd 11169 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 1 ∈ ℂ)
47313ad2ant2 1134 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑀 ∈ ℂ)
4845, 46, 47add32d 11402 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑘 + 1) + 𝑀) = ((𝑘 + 𝑀) + 1))
4948oveq2d 7403 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟((𝑘 + 1) + 𝑀)) = (𝑅𝑟((𝑘 + 𝑀) + 1)))
50303ad2ant2 1134 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑀 ∈ ℕ)
5137, 50nnaddcld 12238 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑘 + 𝑀) ∈ ℕ)
52 relexpsucnnl 14996 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑘 + 𝑀) ∈ ℕ) → (𝑅𝑟((𝑘 + 𝑀) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
5336, 51, 52syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟((𝑘 + 𝑀) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
5449, 53eqtr2d 2765 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
5542, 44, 543eqtrd 2768 . . . . 5 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
56553exp 1119 . . . 4 (𝑘 ∈ ℕ → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
5756a2d 29 . . 3 (𝑘 ∈ ℕ → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
586, 12, 18, 24, 35, 57nnind 12204 . 2 (𝑁 ∈ ℕ → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
59583impib 1116 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ccom 5642  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071  cn 12186  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-relexp 14986
This theorem is referenced by:  relexpaddg  15019  iunrelexpmin1  43697  relexpmulnn  43698  iunrelexpmin2  43701  relexpaddss  43707
  Copyright terms: Public domain W3C validator