Step | Hyp | Ref
| Expression |
1 | | oveq2 7178 |
. . . . . 6
⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) |
2 | 1 | coeq1d 5704 |
. . . . 5
⊢ (𝑛 = 1 → ((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = ((𝑅↑𝑟1) ∘ (𝑅↑𝑟𝑀))) |
3 | | oveq1 7177 |
. . . . . 6
⊢ (𝑛 = 1 → (𝑛 + 𝑀) = (1 + 𝑀)) |
4 | 3 | oveq2d 7186 |
. . . . 5
⊢ (𝑛 = 1 → (𝑅↑𝑟(𝑛 + 𝑀)) = (𝑅↑𝑟(1 + 𝑀))) |
5 | 2, 4 | eqeq12d 2754 |
. . . 4
⊢ (𝑛 = 1 → (((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑛 + 𝑀)) ↔ ((𝑅↑𝑟1) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(1 + 𝑀)))) |
6 | 5 | imbi2d 344 |
. . 3
⊢ (𝑛 = 1 → (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟1) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(1 + 𝑀))))) |
7 | | oveq2 7178 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑘)) |
8 | 7 | coeq1d 5704 |
. . . . 5
⊢ (𝑛 = 𝑘 → ((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀))) |
9 | | oveq1 7177 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝑛 + 𝑀) = (𝑘 + 𝑀)) |
10 | 9 | oveq2d 7186 |
. . . . 5
⊢ (𝑛 = 𝑘 → (𝑅↑𝑟(𝑛 + 𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) |
11 | 8, 10 | eqeq12d 2754 |
. . . 4
⊢ (𝑛 = 𝑘 → (((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑛 + 𝑀)) ↔ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀)))) |
12 | 11 | imbi2d 344 |
. . 3
⊢ (𝑛 = 𝑘 → (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))))) |
13 | | oveq2 7178 |
. . . . . 6
⊢ (𝑛 = (𝑘 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑘 + 1))) |
14 | 13 | coeq1d 5704 |
. . . . 5
⊢ (𝑛 = (𝑘 + 1) → ((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = ((𝑅↑𝑟(𝑘 + 1)) ∘ (𝑅↑𝑟𝑀))) |
15 | | oveq1 7177 |
. . . . . 6
⊢ (𝑛 = (𝑘 + 1) → (𝑛 + 𝑀) = ((𝑘 + 1) + 𝑀)) |
16 | 15 | oveq2d 7186 |
. . . . 5
⊢ (𝑛 = (𝑘 + 1) → (𝑅↑𝑟(𝑛 + 𝑀)) = (𝑅↑𝑟((𝑘 + 1) + 𝑀))) |
17 | 14, 16 | eqeq12d 2754 |
. . . 4
⊢ (𝑛 = (𝑘 + 1) → (((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑛 + 𝑀)) ↔ ((𝑅↑𝑟(𝑘 + 1)) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟((𝑘 + 1) + 𝑀)))) |
18 | 17 | imbi2d 344 |
. . 3
⊢ (𝑛 = (𝑘 + 1) → (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟(𝑘 + 1)) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟((𝑘 + 1) + 𝑀))))) |
19 | | oveq2 7178 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑁)) |
20 | 19 | coeq1d 5704 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀))) |
21 | | oveq1 7177 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑛 + 𝑀) = (𝑁 + 𝑀)) |
22 | 21 | oveq2d 7186 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑅↑𝑟(𝑛 + 𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |
23 | 20, 22 | eqeq12d 2754 |
. . . 4
⊢ (𝑛 = 𝑁 → (((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑛 + 𝑀)) ↔ ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
24 | 23 | imbi2d 344 |
. . 3
⊢ (𝑛 = 𝑁 → (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑛) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))))) |
25 | | relexp1g 14475 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
26 | 25 | adantl 485 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟1) = 𝑅) |
27 | 26 | coeq1d 5704 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟1) ∘ (𝑅↑𝑟𝑀)) = (𝑅 ∘ (𝑅↑𝑟𝑀))) |
28 | | relexpsucnnl 14479 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ ℕ) → (𝑅↑𝑟(𝑀 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑀))) |
29 | 28 | ancoms 462 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑀 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑀))) |
30 | | simpl 486 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → 𝑀 ∈ ℕ) |
31 | 30 | nncnd 11732 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → 𝑀 ∈ ℂ) |
32 | | 1cnd 10714 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → 1 ∈ ℂ) |
33 | 31, 32 | addcomd 10920 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑀 + 1) = (1 + 𝑀)) |
34 | 33 | oveq2d 7186 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑀 + 1)) = (𝑅↑𝑟(1 + 𝑀))) |
35 | 27, 29, 34 | 3eqtr2d 2779 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟1) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(1 + 𝑀))) |
36 | | simp2r 1201 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → 𝑅 ∈ 𝑉) |
37 | | simp1 1137 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → 𝑘 ∈ ℕ) |
38 | | relexpsucnnl 14479 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑘 ∈ ℕ) → (𝑅↑𝑟(𝑘 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑘))) |
39 | 36, 37, 38 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → (𝑅↑𝑟(𝑘 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑘))) |
40 | 39 | coeq1d 5704 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → ((𝑅↑𝑟(𝑘 + 1)) ∘ (𝑅↑𝑟𝑀)) = ((𝑅 ∘ (𝑅↑𝑟𝑘)) ∘ (𝑅↑𝑟𝑀))) |
41 | | coass 6098 |
. . . . . . 7
⊢ ((𝑅 ∘ (𝑅↑𝑟𝑘)) ∘ (𝑅↑𝑟𝑀)) = (𝑅 ∘ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀))) |
42 | 40, 41 | eqtrdi 2789 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → ((𝑅↑𝑟(𝑘 + 1)) ∘ (𝑅↑𝑟𝑀)) = (𝑅 ∘ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)))) |
43 | | simp3 1139 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) |
44 | 43 | coeq2d 5705 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → (𝑅 ∘ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀))) = (𝑅 ∘ (𝑅↑𝑟(𝑘 + 𝑀)))) |
45 | 37 | nncnd 11732 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → 𝑘 ∈ ℂ) |
46 | | 1cnd 10714 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → 1 ∈
ℂ) |
47 | 31 | 3ad2ant2 1135 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → 𝑀 ∈ ℂ) |
48 | 45, 46, 47 | add32d 10945 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → ((𝑘 + 1) + 𝑀) = ((𝑘 + 𝑀) + 1)) |
49 | 48 | oveq2d 7186 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → (𝑅↑𝑟((𝑘 + 1) + 𝑀)) = (𝑅↑𝑟((𝑘 + 𝑀) + 1))) |
50 | 30 | 3ad2ant2 1135 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → 𝑀 ∈ ℕ) |
51 | 37, 50 | nnaddcld 11768 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → (𝑘 + 𝑀) ∈ ℕ) |
52 | | relexpsucnnl 14479 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑘 + 𝑀) ∈ ℕ) → (𝑅↑𝑟((𝑘 + 𝑀) + 1)) = (𝑅 ∘ (𝑅↑𝑟(𝑘 + 𝑀)))) |
53 | 36, 51, 52 | syl2anc 587 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → (𝑅↑𝑟((𝑘 + 𝑀) + 1)) = (𝑅 ∘ (𝑅↑𝑟(𝑘 + 𝑀)))) |
54 | 49, 53 | eqtr2d 2774 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → (𝑅 ∘ (𝑅↑𝑟(𝑘 + 𝑀))) = (𝑅↑𝑟((𝑘 + 1) + 𝑀))) |
55 | 42, 44, 54 | 3eqtrd 2777 |
. . . . 5
⊢ ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) ∧ ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → ((𝑅↑𝑟(𝑘 + 1)) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟((𝑘 + 1) + 𝑀))) |
56 | 55 | 3exp 1120 |
. . . 4
⊢ (𝑘 ∈ ℕ → ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀)) → ((𝑅↑𝑟(𝑘 + 1)) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟((𝑘 + 1) + 𝑀))))) |
57 | 56 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ → (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑘) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑘 + 𝑀))) → ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟(𝑘 + 1)) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟((𝑘 + 1) + 𝑀))))) |
58 | 6, 12, 18, 24, 35, 57 | nnind 11734 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
59 | 58 | 3impib 1117 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |