![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fladdz | Structured version Visualization version GIF version |
Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
Ref | Expression |
---|---|
fladdz | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reflcl 13833 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
3 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ) | |
4 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
5 | 4 | zred 12720 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
6 | flle 13836 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
8 | 2, 3, 5, 7 | leadd1dd 11875 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁)) |
9 | 1red 11260 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
10 | 2, 9 | readdcld 11288 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
11 | flltp1 13837 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
13 | 3, 10, 5, 12 | ltadd1dd 11872 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁)) |
14 | 2 | recnd 11287 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ) |
15 | 1cnd 11254 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ) | |
16 | 5 | recnd 11287 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
17 | 14, 15, 16 | add32d 11487 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1)) |
18 | 13, 17 | breqtrd 5174 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)) |
19 | 3, 5 | readdcld 11288 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℝ) |
20 | 3 | flcld 13835 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
21 | 20, 4 | zaddcld 12724 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ) |
22 | flbi 13853 | . . 3 ⊢ (((𝐴 + 𝑁) ∈ ℝ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) | |
23 | 19, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) |
24 | 8, 18, 23 | mpbir2and 713 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 < clt 11293 ≤ cle 11294 ℤcz 12611 ⌊cfl 13827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fl 13829 |
This theorem is referenced by: flzadd 13863 modcyc 13943 bitsmod 16470 fldivp1 16931 ppip1le 27219 dya2ub 34252 fourierdlem4 46067 fourierdlem47 46109 flsubz 48368 blennnt2 48439 |
Copyright terms: Public domain | W3C validator |