MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fladdz Structured version   Visualization version   GIF version

Theorem fladdz 13545
Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.)
Assertion
Ref Expression
fladdz ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))

Proof of Theorem fladdz
StepHypRef Expression
1 reflcl 13516 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
21adantr 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
3 simpl 483 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ)
4 simpr 485 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
54zred 12426 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
6 flle 13519 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
76adantr 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
82, 3, 5, 7leadd1dd 11589 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁))
9 1red 10976 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ)
102, 9readdcld 11004 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 flltp1 13520 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
1211adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
133, 10, 5, 12ltadd1dd 11586 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁))
142recnd 11003 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ)
15 1cnd 10970 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ)
165recnd 11003 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1714, 15, 16add32d 11202 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1))
1813, 17breqtrd 5100 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))
193, 5readdcld 11004 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℝ)
203flcld 13518 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
2120, 4zaddcld 12430 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ)
22 flbi 13536 . . 3 (((𝐴 + 𝑁) ∈ ℝ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))))
2319, 21, 22syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))))
248, 18, 23mpbir2and 710 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cz 12319  cfl 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fl 13512
This theorem is referenced by:  flzadd  13546  modcyc  13626  bitsmod  16143  fldivp1  16598  ppip1le  26310  dya2ub  32237  fourierdlem4  43652  fourierdlem47  43694  flsubz  45863  blennnt2  45935
  Copyright terms: Public domain W3C validator