![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fladdz | Structured version Visualization version GIF version |
Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
Ref | Expression |
---|---|
fladdz | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reflcl 12892 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
2 | 1 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
3 | simpl 476 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ) | |
4 | simpr 479 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
5 | 4 | zred 11810 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
6 | flle 12895 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
7 | 6 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
8 | 2, 3, 5, 7 | leadd1dd 10966 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁)) |
9 | 1red 10357 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
10 | 2, 9 | readdcld 10386 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
11 | flltp1 12896 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) | |
12 | 11 | adantr 474 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
13 | 3, 10, 5, 12 | ltadd1dd 10963 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁)) |
14 | 2 | recnd 10385 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ) |
15 | 1cnd 10351 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ) | |
16 | 5 | recnd 10385 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
17 | 14, 15, 16 | add32d 10582 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1)) |
18 | 13, 17 | breqtrd 4899 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)) |
19 | 3, 5 | readdcld 10386 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℝ) |
20 | 3 | flcld 12894 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
21 | 20, 4 | zaddcld 11814 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ) |
22 | flbi 12912 | . . 3 ⊢ (((𝐴 + 𝑁) ∈ ℝ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) | |
23 | 19, 21, 22 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) |
24 | 8, 18, 23 | mpbir2and 704 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 ℝcr 10251 1c1 10253 + caddc 10255 < clt 10391 ≤ cle 10392 ℤcz 11704 ⌊cfl 12886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-sup 8617 df-inf 8618 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fl 12888 |
This theorem is referenced by: flzadd 12922 modcyc 13000 bitsmod 15531 fldivp1 15972 ppip1le 25300 dya2ub 30866 fourierdlem4 41115 fourierdlem47 41157 flsubz 43152 blennnt2 43223 |
Copyright terms: Public domain | W3C validator |