MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fladdz Structured version   Visualization version   GIF version

Theorem fladdz 13178
Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.)
Assertion
Ref Expression
fladdz ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))

Proof of Theorem fladdz
StepHypRef Expression
1 reflcl 13149 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
21adantr 484 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
3 simpl 486 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ)
4 simpr 488 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
54zred 12065 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
6 flle 13152 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
76adantr 484 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
82, 3, 5, 7leadd1dd 11231 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁))
9 1red 10619 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ)
102, 9readdcld 10647 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 flltp1 13153 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
1211adantr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
133, 10, 5, 12ltadd1dd 11228 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁))
142recnd 10646 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ)
15 1cnd 10613 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ)
165recnd 10646 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1714, 15, 16add32d 10844 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1))
1813, 17breqtrd 5065 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))
193, 5readdcld 10647 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℝ)
203flcld 13151 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
2120, 4zaddcld 12069 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ)
22 flbi 13169 . . 3 (((𝐴 + 𝑁) ∈ ℝ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))))
2319, 21, 22syl2anc 587 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))))
248, 18, 23mpbir2and 712 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115   class class class wbr 5039  cfv 6328  (class class class)co 7130  cr 10513  1c1 10515   + caddc 10517   < clt 10652  cle 10653  cz 11959  cfl 13143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fl 13145
This theorem is referenced by:  flzadd  13179  modcyc  13257  bitsmod  15762  fldivp1  16210  ppip1le  25725  dya2ub  31536  fourierdlem4  42576  fourierdlem47  42618  flsubz  44753  blennnt2  44825
  Copyright terms: Public domain W3C validator