Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem18 Structured version   Visualization version   GIF version

Theorem lcmineqlem18 42059
Description: Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem18.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem18 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))

Proof of Theorem lcmineqlem18
StepHypRef Expression
1 0zd 12600 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
2 2z 12624 . . . . . . . . . . . . . . 15 2 ∈ ℤ
32a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
4 lcmineqlem18.1 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
54nnzd 12615 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
63, 5zmulcld 12703 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℤ)
76peano2zd 12700 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
85peano2zd 12700 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
94nnred 12255 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
10 1red 11236 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
114nnnn0d 12562 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
1211nn0ge0d 12565 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑁)
13 0le1 11760 . . . . . . . . . . . . . 14 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 1)
159, 10, 12, 14addge0d 11813 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 + 1))
169, 10readdcld 11264 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℝ)
1716, 9addge01d 11825 . . . . . . . . . . . . . 14 (𝜑 → (0 ≤ 𝑁 ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 𝑁)))
1812, 17mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ≤ ((𝑁 + 1) + 𝑁))
199recnd 11263 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
20 1cnd 11230 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
2119, 20, 19add32d 11463 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 1) + 𝑁) = ((𝑁 + 𝑁) + 1))
22192timesd 12484 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
2322oveq1d 7420 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
2423eqcomd 2741 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 𝑁) + 1) = ((2 · 𝑁) + 1))
2521, 24eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + 1) + 𝑁) = ((2 · 𝑁) + 1))
2618, 25breqtrd 5145 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 1))
271, 7, 8, 15, 26elfzd 13532 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ (0...((2 · 𝑁) + 1)))
28 bcval2 14323 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (0...((2 · 𝑁) + 1)) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
306zcnd 12698 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℂ)
3130, 20, 19, 20addsub4d 11641 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = (((2 · 𝑁) − 𝑁) + (1 − 1)))
3222oveq1d 7420 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) − 𝑁) = ((𝑁 + 𝑁) − 𝑁))
3319, 19pncand 11595 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 𝑁) − 𝑁) = 𝑁)
3432, 33eqtrd 2770 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 𝑁) − 𝑁) = 𝑁)
35 1m1e0 12312 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
3635a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 1) = 0)
3734, 36oveq12d 7423 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) − 𝑁) + (1 − 1)) = (𝑁 + 0))
3819addridd 11435 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 0) = 𝑁)
3937, 38eqtrd 2770 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) − 𝑁) + (1 − 1)) = 𝑁)
4031, 39eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
4140fveq2d 6880 . . . . . . . . . . . 12 (𝜑 → (!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) = (!‘𝑁))
4241oveq1d 7420 . . . . . . . . . . 11 (𝜑 → ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1))) = ((!‘𝑁) · (!‘(𝑁 + 1))))
4342oveq2d 7421 . . . . . . . . . 10 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))))
4429, 43eqtrd 2770 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))))
45 faccl 14301 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
4611, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑁) ∈ ℕ)
4746nncnd 12256 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) ∈ ℂ)
48 1nn0 12517 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
4948a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
5011, 49nn0addcld 12566 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℕ0)
51 faccl 14301 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘(𝑁 + 1)) ∈ ℕ)
5352nncnd 12256 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑁 + 1)) ∈ ℂ)
5447, 53mulcomd 11256 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) · (!‘(𝑁 + 1))) = ((!‘(𝑁 + 1)) · (!‘𝑁)))
55 facp1 14296 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
5611, 55syl 17 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
5719, 20addcld 11254 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℂ)
5847, 57mulcomd 11256 . . . . . . . . . . . . . 14 (𝜑 → ((!‘𝑁) · (𝑁 + 1)) = ((𝑁 + 1) · (!‘𝑁)))
5956, 58eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → (!‘(𝑁 + 1)) = ((𝑁 + 1) · (!‘𝑁)))
6059oveq1d 7420 . . . . . . . . . . . 12 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) = (((𝑁 + 1) · (!‘𝑁)) · (!‘𝑁)))
6157, 47, 47mulassd 11258 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + 1) · (!‘𝑁)) · (!‘𝑁)) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6260, 61eqtrd 2770 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6354, 62eqtrd 2770 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) · (!‘(𝑁 + 1))) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6463oveq2d 7421 . . . . . . . . 9 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
6544, 64eqtrd 2770 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
66 2nn0 12518 . . . . . . . . . . . . 13 2 ∈ ℕ0
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ0)
6867, 11nn0mulcld 12567 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ0)
69 facp1 14296 . . . . . . . . . . 11 ((2 · 𝑁) ∈ ℕ0 → (!‘((2 · 𝑁) + 1)) = ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)))
7068, 69syl 17 . . . . . . . . . 10 (𝜑 → (!‘((2 · 𝑁) + 1)) = ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)))
71 faccl 14301 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ0 → (!‘(2 · 𝑁)) ∈ ℕ)
7268, 71syl 17 . . . . . . . . . . . 12 (𝜑 → (!‘(2 · 𝑁)) ∈ ℕ)
7372nncnd 12256 . . . . . . . . . . 11 (𝜑 → (!‘(2 · 𝑁)) ∈ ℂ)
7430, 20addcld 11254 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
7573, 74mulcomd 11256 . . . . . . . . . 10 (𝜑 → ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))))
7670, 75eqtrd 2770 . . . . . . . . 9 (𝜑 → (!‘((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))))
7776oveq1d 7420 . . . . . . . 8 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
7865, 77eqtrd 2770 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
7978oveq2d 7421 . . . . . 6 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))))
8074, 73mulcld 11255 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) ∈ ℂ)
8147, 47mulcld 11255 . . . . . . . . 9 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℂ)
8257, 81mulcld 11255 . . . . . . . 8 (𝜑 → ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))) ∈ ℂ)
834peano2nnd 12257 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ)
8483nnne0d 12290 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ≠ 0)
8546nnne0d 12290 . . . . . . . . . 10 (𝜑 → (!‘𝑁) ≠ 0)
8647, 47, 85, 85mulne0d 11889 . . . . . . . . 9 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ≠ 0)
8757, 81, 84, 86mulne0d 11889 . . . . . . . 8 (𝜑 → ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))) ≠ 0)
8857, 80, 82, 87divassd 12052 . . . . . . 7 (𝜑 → (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))))
8988eqcomd 2741 . . . . . 6 (𝜑 → ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9079, 89eqtrd 2770 . . . . 5 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9157, 57, 80, 81, 84, 86divmuldivd 12058 . . . . . 6 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9291eqcomd 2741 . . . . 5 (𝜑 → (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9390, 92eqtrd 2770 . . . 4 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9457, 84dividd 12015 . . . . . 6 (𝜑 → ((𝑁 + 1) / (𝑁 + 1)) = 1)
9594oveq1d 7420 . . . . 5 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = (1 · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9680, 81, 86divcld 12017 . . . . . 6 (𝜑 → ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))) ∈ ℂ)
9796mullidd 11253 . . . . 5 (𝜑 → (1 · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
9895, 97eqtrd 2770 . . . 4 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
9993, 98eqtrd 2770 . . 3 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
10074, 73, 81, 86divassd 12052 . . 3 (𝜑 → ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
10199, 100eqtrd 2770 . 2 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
1029, 9addge01d 11825 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑁𝑁 ≤ (𝑁 + 𝑁)))
10322breq2d 5131 . . . . . . . . 9 (𝜑 → (𝑁 ≤ (2 · 𝑁) ↔ 𝑁 ≤ (𝑁 + 𝑁)))
104102, 103bitr4d 282 . . . . . . . 8 (𝜑 → (0 ≤ 𝑁𝑁 ≤ (2 · 𝑁)))
10512, 104mpbid 232 . . . . . . 7 (𝜑𝑁 ≤ (2 · 𝑁))
1061, 6, 5, 12, 105elfzd 13532 . . . . . 6 (𝜑𝑁 ∈ (0...(2 · 𝑁)))
107 bcval2 14323 . . . . . 6 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))))
108106, 107syl 17 . . . . 5 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))))
10934fveq2d 6880 . . . . . . 7 (𝜑 → (!‘((2 · 𝑁) − 𝑁)) = (!‘𝑁))
110109oveq1d 7420 . . . . . 6 (𝜑 → ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁)) = ((!‘𝑁) · (!‘𝑁)))
111110oveq2d 7421 . . . . 5 (𝜑 → ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
112108, 111eqtrd 2770 . . . 4 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
113112oveq2d 7421 . . 3 (𝜑 → (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
114113eqcomd 2741 . 2 (𝜑 → (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
115101, 114eqtrd 2770 1 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  ...cfz 13524  !cfa 14291  Ccbc 14320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-fac 14292  df-bc 14321
This theorem is referenced by:  lcmineqlem19  42060
  Copyright terms: Public domain W3C validator