Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem18 Structured version   Visualization version   GIF version

Theorem lcmineqlem18 42019
Description: Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem18.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem18 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))

Proof of Theorem lcmineqlem18
StepHypRef Expression
1 0zd 12501 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
2 2z 12525 . . . . . . . . . . . . . . 15 2 ∈ ℤ
32a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
4 lcmineqlem18.1 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
54nnzd 12516 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
63, 5zmulcld 12604 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℤ)
76peano2zd 12601 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
85peano2zd 12601 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
94nnred 12161 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
10 1red 11135 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
114nnnn0d 12463 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
1211nn0ge0d 12466 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑁)
13 0le1 11661 . . . . . . . . . . . . . 14 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 1)
159, 10, 12, 14addge0d 11714 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 + 1))
169, 10readdcld 11163 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℝ)
1716, 9addge01d 11726 . . . . . . . . . . . . . 14 (𝜑 → (0 ≤ 𝑁 ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 𝑁)))
1812, 17mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ≤ ((𝑁 + 1) + 𝑁))
199recnd 11162 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
20 1cnd 11129 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
2119, 20, 19add32d 11362 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 1) + 𝑁) = ((𝑁 + 𝑁) + 1))
22192timesd 12385 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
2322oveq1d 7368 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
2423eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 𝑁) + 1) = ((2 · 𝑁) + 1))
2521, 24eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + 1) + 𝑁) = ((2 · 𝑁) + 1))
2618, 25breqtrd 5121 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 1))
271, 7, 8, 15, 26elfzd 13436 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ (0...((2 · 𝑁) + 1)))
28 bcval2 14230 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (0...((2 · 𝑁) + 1)) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
306zcnd 12599 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℂ)
3130, 20, 19, 20addsub4d 11540 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = (((2 · 𝑁) − 𝑁) + (1 − 1)))
3222oveq1d 7368 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) − 𝑁) = ((𝑁 + 𝑁) − 𝑁))
3319, 19pncand 11494 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 𝑁) − 𝑁) = 𝑁)
3432, 33eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 𝑁) − 𝑁) = 𝑁)
35 1m1e0 12218 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
3635a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 1) = 0)
3734, 36oveq12d 7371 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) − 𝑁) + (1 − 1)) = (𝑁 + 0))
3819addridd 11334 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 0) = 𝑁)
3937, 38eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) − 𝑁) + (1 − 1)) = 𝑁)
4031, 39eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
4140fveq2d 6830 . . . . . . . . . . . 12 (𝜑 → (!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) = (!‘𝑁))
4241oveq1d 7368 . . . . . . . . . . 11 (𝜑 → ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1))) = ((!‘𝑁) · (!‘(𝑁 + 1))))
4342oveq2d 7369 . . . . . . . . . 10 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))))
4429, 43eqtrd 2764 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))))
45 faccl 14208 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
4611, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑁) ∈ ℕ)
4746nncnd 12162 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) ∈ ℂ)
48 1nn0 12418 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
4948a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
5011, 49nn0addcld 12467 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℕ0)
51 faccl 14208 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘(𝑁 + 1)) ∈ ℕ)
5352nncnd 12162 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑁 + 1)) ∈ ℂ)
5447, 53mulcomd 11155 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) · (!‘(𝑁 + 1))) = ((!‘(𝑁 + 1)) · (!‘𝑁)))
55 facp1 14203 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
5611, 55syl 17 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
5719, 20addcld 11153 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℂ)
5847, 57mulcomd 11155 . . . . . . . . . . . . . 14 (𝜑 → ((!‘𝑁) · (𝑁 + 1)) = ((𝑁 + 1) · (!‘𝑁)))
5956, 58eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (!‘(𝑁 + 1)) = ((𝑁 + 1) · (!‘𝑁)))
6059oveq1d 7368 . . . . . . . . . . . 12 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) = (((𝑁 + 1) · (!‘𝑁)) · (!‘𝑁)))
6157, 47, 47mulassd 11157 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + 1) · (!‘𝑁)) · (!‘𝑁)) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6260, 61eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6354, 62eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) · (!‘(𝑁 + 1))) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6463oveq2d 7369 . . . . . . . . 9 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
6544, 64eqtrd 2764 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
66 2nn0 12419 . . . . . . . . . . . . 13 2 ∈ ℕ0
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ0)
6867, 11nn0mulcld 12468 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ0)
69 facp1 14203 . . . . . . . . . . 11 ((2 · 𝑁) ∈ ℕ0 → (!‘((2 · 𝑁) + 1)) = ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)))
7068, 69syl 17 . . . . . . . . . 10 (𝜑 → (!‘((2 · 𝑁) + 1)) = ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)))
71 faccl 14208 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ0 → (!‘(2 · 𝑁)) ∈ ℕ)
7268, 71syl 17 . . . . . . . . . . . 12 (𝜑 → (!‘(2 · 𝑁)) ∈ ℕ)
7372nncnd 12162 . . . . . . . . . . 11 (𝜑 → (!‘(2 · 𝑁)) ∈ ℂ)
7430, 20addcld 11153 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
7573, 74mulcomd 11155 . . . . . . . . . 10 (𝜑 → ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))))
7670, 75eqtrd 2764 . . . . . . . . 9 (𝜑 → (!‘((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))))
7776oveq1d 7368 . . . . . . . 8 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
7865, 77eqtrd 2764 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
7978oveq2d 7369 . . . . . 6 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))))
8074, 73mulcld 11154 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) ∈ ℂ)
8147, 47mulcld 11154 . . . . . . . . 9 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℂ)
8257, 81mulcld 11154 . . . . . . . 8 (𝜑 → ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))) ∈ ℂ)
834peano2nnd 12163 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ)
8483nnne0d 12196 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ≠ 0)
8546nnne0d 12196 . . . . . . . . . 10 (𝜑 → (!‘𝑁) ≠ 0)
8647, 47, 85, 85mulne0d 11790 . . . . . . . . 9 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ≠ 0)
8757, 81, 84, 86mulne0d 11790 . . . . . . . 8 (𝜑 → ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))) ≠ 0)
8857, 80, 82, 87divassd 11953 . . . . . . 7 (𝜑 → (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))))
8988eqcomd 2735 . . . . . 6 (𝜑 → ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9079, 89eqtrd 2764 . . . . 5 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9157, 57, 80, 81, 84, 86divmuldivd 11959 . . . . . 6 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9291eqcomd 2735 . . . . 5 (𝜑 → (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9390, 92eqtrd 2764 . . . 4 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9457, 84dividd 11916 . . . . . 6 (𝜑 → ((𝑁 + 1) / (𝑁 + 1)) = 1)
9594oveq1d 7368 . . . . 5 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = (1 · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9680, 81, 86divcld 11918 . . . . . 6 (𝜑 → ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))) ∈ ℂ)
9796mullidd 11152 . . . . 5 (𝜑 → (1 · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
9895, 97eqtrd 2764 . . . 4 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
9993, 98eqtrd 2764 . . 3 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
10074, 73, 81, 86divassd 11953 . . 3 (𝜑 → ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
10199, 100eqtrd 2764 . 2 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
1029, 9addge01d 11726 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑁𝑁 ≤ (𝑁 + 𝑁)))
10322breq2d 5107 . . . . . . . . 9 (𝜑 → (𝑁 ≤ (2 · 𝑁) ↔ 𝑁 ≤ (𝑁 + 𝑁)))
104102, 103bitr4d 282 . . . . . . . 8 (𝜑 → (0 ≤ 𝑁𝑁 ≤ (2 · 𝑁)))
10512, 104mpbid 232 . . . . . . 7 (𝜑𝑁 ≤ (2 · 𝑁))
1061, 6, 5, 12, 105elfzd 13436 . . . . . 6 (𝜑𝑁 ∈ (0...(2 · 𝑁)))
107 bcval2 14230 . . . . . 6 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))))
108106, 107syl 17 . . . . 5 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))))
10934fveq2d 6830 . . . . . . 7 (𝜑 → (!‘((2 · 𝑁) − 𝑁)) = (!‘𝑁))
110109oveq1d 7368 . . . . . 6 (𝜑 → ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁)) = ((!‘𝑁) · (!‘𝑁)))
111110oveq2d 7369 . . . . 5 (𝜑 → ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
112108, 111eqtrd 2764 . . . 4 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
113112oveq2d 7369 . . 3 (𝜑 → (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
114113eqcomd 2735 . 2 (𝜑 → (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
115101, 114eqtrd 2764 1 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cz 12489  ...cfz 13428  !cfa 14198  Ccbc 14227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-fac 14199  df-bc 14228
This theorem is referenced by:  lcmineqlem19  42020
  Copyright terms: Public domain W3C validator