Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem18 Structured version   Visualization version   GIF version

Theorem lcmineqlem18 40266
Description: Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem18.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem18 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))

Proof of Theorem lcmineqlem18
StepHypRef Expression
1 0zd 12401 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
2 2z 12422 . . . . . . . . . . . . . . 15 2 ∈ ℤ
32a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
4 lcmineqlem18.1 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
54nnzd 12495 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
63, 5zmulcld 12502 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℤ)
76peano2zd 12499 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
85peano2zd 12499 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
94nnred 12058 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
10 1red 11046 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
114nnnn0d 12363 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
1211nn0ge0d 12366 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑁)
13 0le1 11568 . . . . . . . . . . . . . 14 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 1)
159, 10, 12, 14addge0d 11621 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 + 1))
169, 10readdcld 11074 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℝ)
1716, 9addge01d 11633 . . . . . . . . . . . . . 14 (𝜑 → (0 ≤ 𝑁 ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 𝑁)))
1812, 17mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ≤ ((𝑁 + 1) + 𝑁))
199recnd 11073 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
20 1cnd 11040 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
2119, 20, 19add32d 11272 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 1) + 𝑁) = ((𝑁 + 𝑁) + 1))
22192timesd 12286 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
2322oveq1d 7328 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
2423eqcomd 2743 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 𝑁) + 1) = ((2 · 𝑁) + 1))
2521, 24eqtrd 2777 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + 1) + 𝑁) = ((2 · 𝑁) + 1))
2618, 25breqtrd 5111 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 1))
271, 7, 8, 15, 26elfzd 13317 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ (0...((2 · 𝑁) + 1)))
28 bcval2 14089 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (0...((2 · 𝑁) + 1)) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
306zcnd 12497 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℂ)
3130, 20, 19, 20addsub4d 11449 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = (((2 · 𝑁) − 𝑁) + (1 − 1)))
3222oveq1d 7328 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) − 𝑁) = ((𝑁 + 𝑁) − 𝑁))
3319, 19pncand 11403 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 𝑁) − 𝑁) = 𝑁)
3432, 33eqtrd 2777 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 𝑁) − 𝑁) = 𝑁)
35 1m1e0 12115 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
3635a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 1) = 0)
3734, 36oveq12d 7331 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) − 𝑁) + (1 − 1)) = (𝑁 + 0))
3819addid1d 11245 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 0) = 𝑁)
3937, 38eqtrd 2777 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) − 𝑁) + (1 − 1)) = 𝑁)
4031, 39eqtrd 2777 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
4140fveq2d 6813 . . . . . . . . . . . 12 (𝜑 → (!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) = (!‘𝑁))
4241oveq1d 7328 . . . . . . . . . . 11 (𝜑 → ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1))) = ((!‘𝑁) · (!‘(𝑁 + 1))))
4342oveq2d 7329 . . . . . . . . . 10 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))))
4429, 43eqtrd 2777 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))))
45 faccl 14067 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
4611, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑁) ∈ ℕ)
4746nncnd 12059 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) ∈ ℂ)
48 1nn0 12319 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
4948a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
5011, 49nn0addcld 12367 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℕ0)
51 faccl 14067 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘(𝑁 + 1)) ∈ ℕ)
5352nncnd 12059 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑁 + 1)) ∈ ℂ)
5447, 53mulcomd 11066 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) · (!‘(𝑁 + 1))) = ((!‘(𝑁 + 1)) · (!‘𝑁)))
55 facp1 14062 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
5611, 55syl 17 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
5719, 20addcld 11064 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℂ)
5847, 57mulcomd 11066 . . . . . . . . . . . . . 14 (𝜑 → ((!‘𝑁) · (𝑁 + 1)) = ((𝑁 + 1) · (!‘𝑁)))
5956, 58eqtrd 2777 . . . . . . . . . . . . 13 (𝜑 → (!‘(𝑁 + 1)) = ((𝑁 + 1) · (!‘𝑁)))
6059oveq1d 7328 . . . . . . . . . . . 12 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) = (((𝑁 + 1) · (!‘𝑁)) · (!‘𝑁)))
6157, 47, 47mulassd 11068 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + 1) · (!‘𝑁)) · (!‘𝑁)) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6260, 61eqtrd 2777 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6354, 62eqtrd 2777 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) · (!‘(𝑁 + 1))) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6463oveq2d 7329 . . . . . . . . 9 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
6544, 64eqtrd 2777 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
66 2nn0 12320 . . . . . . . . . . . . 13 2 ∈ ℕ0
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ0)
6867, 11nn0mulcld 12368 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ0)
69 facp1 14062 . . . . . . . . . . 11 ((2 · 𝑁) ∈ ℕ0 → (!‘((2 · 𝑁) + 1)) = ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)))
7068, 69syl 17 . . . . . . . . . 10 (𝜑 → (!‘((2 · 𝑁) + 1)) = ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)))
71 faccl 14067 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ0 → (!‘(2 · 𝑁)) ∈ ℕ)
7268, 71syl 17 . . . . . . . . . . . 12 (𝜑 → (!‘(2 · 𝑁)) ∈ ℕ)
7372nncnd 12059 . . . . . . . . . . 11 (𝜑 → (!‘(2 · 𝑁)) ∈ ℂ)
7430, 20addcld 11064 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
7573, 74mulcomd 11066 . . . . . . . . . 10 (𝜑 → ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))))
7670, 75eqtrd 2777 . . . . . . . . 9 (𝜑 → (!‘((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))))
7776oveq1d 7328 . . . . . . . 8 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
7865, 77eqtrd 2777 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
7978oveq2d 7329 . . . . . 6 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))))
8074, 73mulcld 11065 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) ∈ ℂ)
8147, 47mulcld 11065 . . . . . . . . 9 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℂ)
8257, 81mulcld 11065 . . . . . . . 8 (𝜑 → ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))) ∈ ℂ)
834peano2nnd 12060 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ)
8483nnne0d 12093 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ≠ 0)
8546nnne0d 12093 . . . . . . . . . 10 (𝜑 → (!‘𝑁) ≠ 0)
8647, 47, 85, 85mulne0d 11697 . . . . . . . . 9 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ≠ 0)
8757, 81, 84, 86mulne0d 11697 . . . . . . . 8 (𝜑 → ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))) ≠ 0)
8857, 80, 82, 87divassd 11856 . . . . . . 7 (𝜑 → (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))))
8988eqcomd 2743 . . . . . 6 (𝜑 → ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9079, 89eqtrd 2777 . . . . 5 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9157, 57, 80, 81, 84, 86divmuldivd 11862 . . . . . 6 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9291eqcomd 2743 . . . . 5 (𝜑 → (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9390, 92eqtrd 2777 . . . 4 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9457, 84dividd 11819 . . . . . 6 (𝜑 → ((𝑁 + 1) / (𝑁 + 1)) = 1)
9594oveq1d 7328 . . . . 5 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = (1 · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9680, 81, 86divcld 11821 . . . . . 6 (𝜑 → ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))) ∈ ℂ)
9796mulid2d 11063 . . . . 5 (𝜑 → (1 · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
9895, 97eqtrd 2777 . . . 4 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
9993, 98eqtrd 2777 . . 3 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
10074, 73, 81, 86divassd 11856 . . 3 (𝜑 → ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
10199, 100eqtrd 2777 . 2 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
1029, 9addge01d 11633 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑁𝑁 ≤ (𝑁 + 𝑁)))
10322breq2d 5097 . . . . . . . . 9 (𝜑 → (𝑁 ≤ (2 · 𝑁) ↔ 𝑁 ≤ (𝑁 + 𝑁)))
104102, 103bitr4d 281 . . . . . . . 8 (𝜑 → (0 ≤ 𝑁𝑁 ≤ (2 · 𝑁)))
10512, 104mpbid 231 . . . . . . 7 (𝜑𝑁 ≤ (2 · 𝑁))
1061, 6, 5, 12, 105elfzd 13317 . . . . . 6 (𝜑𝑁 ∈ (0...(2 · 𝑁)))
107 bcval2 14089 . . . . . 6 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))))
108106, 107syl 17 . . . . 5 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))))
10934fveq2d 6813 . . . . . . 7 (𝜑 → (!‘((2 · 𝑁) − 𝑁)) = (!‘𝑁))
110109oveq1d 7328 . . . . . 6 (𝜑 → ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁)) = ((!‘𝑁) · (!‘𝑁)))
111110oveq2d 7329 . . . . 5 (𝜑 → ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
112108, 111eqtrd 2777 . . . 4 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
113112oveq2d 7329 . . 3 (𝜑 → (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
114113eqcomd 2743 . 2 (𝜑 → (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
115101, 114eqtrd 2777 1 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105   class class class wbr 5085  cfv 6463  (class class class)co 7313  0cc0 10941  1c1 10942   + caddc 10944   · cmul 10946  cle 11080  cmin 11275   / cdiv 11702  cn 12043  2c2 12098  0cn0 12303  cz 12389  ...cfz 13309  !cfa 14057  Ccbc 14086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-n0 12304  df-z 12390  df-uz 12653  df-fz 13310  df-seq 13792  df-fac 14058  df-bc 14087
This theorem is referenced by:  lcmineqlem19  40267
  Copyright terms: Public domain W3C validator