Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem18 Structured version   Visualization version   GIF version

Theorem lcmineqlem18 42041
Description: Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem18.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem18 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))

Proof of Theorem lcmineqlem18
StepHypRef Expression
1 0zd 12548 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
2 2z 12572 . . . . . . . . . . . . . . 15 2 ∈ ℤ
32a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
4 lcmineqlem18.1 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
54nnzd 12563 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
63, 5zmulcld 12651 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℤ)
76peano2zd 12648 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
85peano2zd 12648 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
94nnred 12208 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
10 1red 11182 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
114nnnn0d 12510 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
1211nn0ge0d 12513 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑁)
13 0le1 11708 . . . . . . . . . . . . . 14 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 1)
159, 10, 12, 14addge0d 11761 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 + 1))
169, 10readdcld 11210 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℝ)
1716, 9addge01d 11773 . . . . . . . . . . . . . 14 (𝜑 → (0 ≤ 𝑁 ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 𝑁)))
1812, 17mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ≤ ((𝑁 + 1) + 𝑁))
199recnd 11209 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
20 1cnd 11176 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
2119, 20, 19add32d 11409 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 1) + 𝑁) = ((𝑁 + 𝑁) + 1))
22192timesd 12432 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
2322oveq1d 7405 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
2423eqcomd 2736 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 𝑁) + 1) = ((2 · 𝑁) + 1))
2521, 24eqtrd 2765 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + 1) + 𝑁) = ((2 · 𝑁) + 1))
2618, 25breqtrd 5136 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 1))
271, 7, 8, 15, 26elfzd 13483 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ (0...((2 · 𝑁) + 1)))
28 bcval2 14277 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (0...((2 · 𝑁) + 1)) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
306zcnd 12646 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℂ)
3130, 20, 19, 20addsub4d 11587 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = (((2 · 𝑁) − 𝑁) + (1 − 1)))
3222oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) − 𝑁) = ((𝑁 + 𝑁) − 𝑁))
3319, 19pncand 11541 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 𝑁) − 𝑁) = 𝑁)
3432, 33eqtrd 2765 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 𝑁) − 𝑁) = 𝑁)
35 1m1e0 12265 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
3635a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 1) = 0)
3734, 36oveq12d 7408 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) − 𝑁) + (1 − 1)) = (𝑁 + 0))
3819addridd 11381 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 0) = 𝑁)
3937, 38eqtrd 2765 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) − 𝑁) + (1 − 1)) = 𝑁)
4031, 39eqtrd 2765 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
4140fveq2d 6865 . . . . . . . . . . . 12 (𝜑 → (!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) = (!‘𝑁))
4241oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1))) = ((!‘𝑁) · (!‘(𝑁 + 1))))
4342oveq2d 7406 . . . . . . . . . 10 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − (𝑁 + 1))) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))))
4429, 43eqtrd 2765 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))))
45 faccl 14255 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
4611, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑁) ∈ ℕ)
4746nncnd 12209 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) ∈ ℂ)
48 1nn0 12465 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
4948a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
5011, 49nn0addcld 12514 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℕ0)
51 faccl 14255 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘(𝑁 + 1)) ∈ ℕ)
5352nncnd 12209 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑁 + 1)) ∈ ℂ)
5447, 53mulcomd 11202 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) · (!‘(𝑁 + 1))) = ((!‘(𝑁 + 1)) · (!‘𝑁)))
55 facp1 14250 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
5611, 55syl 17 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
5719, 20addcld 11200 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℂ)
5847, 57mulcomd 11202 . . . . . . . . . . . . . 14 (𝜑 → ((!‘𝑁) · (𝑁 + 1)) = ((𝑁 + 1) · (!‘𝑁)))
5956, 58eqtrd 2765 . . . . . . . . . . . . 13 (𝜑 → (!‘(𝑁 + 1)) = ((𝑁 + 1) · (!‘𝑁)))
6059oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) = (((𝑁 + 1) · (!‘𝑁)) · (!‘𝑁)))
6157, 47, 47mulassd 11204 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + 1) · (!‘𝑁)) · (!‘𝑁)) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6260, 61eqtrd 2765 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6354, 62eqtrd 2765 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) · (!‘(𝑁 + 1))) = ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))
6463oveq2d 7406 . . . . . . . . 9 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘𝑁) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
6544, 64eqtrd 2765 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
66 2nn0 12466 . . . . . . . . . . . . 13 2 ∈ ℕ0
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ0)
6867, 11nn0mulcld 12515 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ0)
69 facp1 14250 . . . . . . . . . . 11 ((2 · 𝑁) ∈ ℕ0 → (!‘((2 · 𝑁) + 1)) = ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)))
7068, 69syl 17 . . . . . . . . . 10 (𝜑 → (!‘((2 · 𝑁) + 1)) = ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)))
71 faccl 14255 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ0 → (!‘(2 · 𝑁)) ∈ ℕ)
7268, 71syl 17 . . . . . . . . . . . 12 (𝜑 → (!‘(2 · 𝑁)) ∈ ℕ)
7372nncnd 12209 . . . . . . . . . . 11 (𝜑 → (!‘(2 · 𝑁)) ∈ ℂ)
7430, 20addcld 11200 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
7573, 74mulcomd 11202 . . . . . . . . . 10 (𝜑 → ((!‘(2 · 𝑁)) · ((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))))
7670, 75eqtrd 2765 . . . . . . . . 9 (𝜑 → (!‘((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))))
7776oveq1d 7405 . . . . . . . 8 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
7865, 77eqtrd 2765 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
7978oveq2d 7406 . . . . . 6 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))))
8074, 73mulcld 11201 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) ∈ ℂ)
8147, 47mulcld 11201 . . . . . . . . 9 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℂ)
8257, 81mulcld 11201 . . . . . . . 8 (𝜑 → ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))) ∈ ℂ)
834peano2nnd 12210 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ)
8483nnne0d 12243 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ≠ 0)
8546nnne0d 12243 . . . . . . . . . 10 (𝜑 → (!‘𝑁) ≠ 0)
8647, 47, 85, 85mulne0d 11837 . . . . . . . . 9 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ≠ 0)
8757, 81, 84, 86mulne0d 11837 . . . . . . . 8 (𝜑 → ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))) ≠ 0)
8857, 80, 82, 87divassd 12000 . . . . . . 7 (𝜑 → (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))))
8988eqcomd 2736 . . . . . 6 (𝜑 → ((𝑁 + 1) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁))))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9079, 89eqtrd 2765 . . . . 5 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9157, 57, 80, 81, 84, 86divmuldivd 12006 . . . . . 6 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))))
9291eqcomd 2736 . . . . 5 (𝜑 → (((𝑁 + 1) · (((2 · 𝑁) + 1) · (!‘(2 · 𝑁)))) / ((𝑁 + 1) · ((!‘𝑁) · (!‘𝑁)))) = (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9390, 92eqtrd 2765 . . . 4 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9457, 84dividd 11963 . . . . . 6 (𝜑 → ((𝑁 + 1) / (𝑁 + 1)) = 1)
9594oveq1d 7405 . . . . 5 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = (1 · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))))
9680, 81, 86divcld 11965 . . . . . 6 (𝜑 → ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))) ∈ ℂ)
9796mullidd 11199 . . . . 5 (𝜑 → (1 · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
9895, 97eqtrd 2765 . . . 4 (𝜑 → (((𝑁 + 1) / (𝑁 + 1)) · ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁)))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
9993, 98eqtrd 2765 . . 3 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))))
10074, 73, 81, 86divassd 12000 . . 3 (𝜑 → ((((2 · 𝑁) + 1) · (!‘(2 · 𝑁))) / ((!‘𝑁) · (!‘𝑁))) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
10199, 100eqtrd 2765 . 2 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
1029, 9addge01d 11773 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑁𝑁 ≤ (𝑁 + 𝑁)))
10322breq2d 5122 . . . . . . . . 9 (𝜑 → (𝑁 ≤ (2 · 𝑁) ↔ 𝑁 ≤ (𝑁 + 𝑁)))
104102, 103bitr4d 282 . . . . . . . 8 (𝜑 → (0 ≤ 𝑁𝑁 ≤ (2 · 𝑁)))
10512, 104mpbid 232 . . . . . . 7 (𝜑𝑁 ≤ (2 · 𝑁))
1061, 6, 5, 12, 105elfzd 13483 . . . . . 6 (𝜑𝑁 ∈ (0...(2 · 𝑁)))
107 bcval2 14277 . . . . . 6 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))))
108106, 107syl 17 . . . . 5 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))))
10934fveq2d 6865 . . . . . . 7 (𝜑 → (!‘((2 · 𝑁) − 𝑁)) = (!‘𝑁))
110109oveq1d 7405 . . . . . 6 (𝜑 → ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁)) = ((!‘𝑁) · (!‘𝑁)))
111110oveq2d 7406 . . . . 5 (𝜑 → ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
112108, 111eqtrd 2765 . . . 4 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
113112oveq2d 7406 . . 3 (𝜑 → (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)) = (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))))
114113eqcomd 2736 . 2 (𝜑 → (((2 · 𝑁) + 1) · ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
115101, 114eqtrd 2765 1 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  ...cfz 13475  !cfa 14245  Ccbc 14274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-fac 14246  df-bc 14275
This theorem is referenced by:  lcmineqlem19  42042
  Copyright terms: Public domain W3C validator