MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1 Structured version   Visualization version   GIF version

Theorem dcubic1 26179
Description: Forward direction of dcubic 26180: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c (𝜑𝑃 ∈ ℂ)
dcubic.d (𝜑𝑄 ∈ ℂ)
dcubic.x (𝜑𝑋 ∈ ℂ)
dcubic.t (𝜑𝑇 ∈ ℂ)
dcubic.3 (𝜑 → (𝑇↑3) = (𝐺𝑁))
dcubic.g (𝜑𝐺 ∈ ℂ)
dcubic.2 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
dcubic.m (𝜑𝑀 = (𝑃 / 3))
dcubic.n (𝜑𝑁 = (𝑄 / 2))
dcubic.0 (𝜑𝑇 ≠ 0)
dcubic1.x (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
Assertion
Ref Expression
dcubic1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)

Proof of Theorem dcubic1
StepHypRef Expression
1 dcubic.3 . . . . . . 7 (𝜑 → (𝑇↑3) = (𝐺𝑁))
21oveq1d 7368 . . . . . 6 (𝜑 → ((𝑇↑3)↑2) = ((𝐺𝑁)↑2))
3 dcubic.g . . . . . . 7 (𝜑𝐺 ∈ ℂ)
4 dcubic.n . . . . . . . 8 (𝜑𝑁 = (𝑄 / 2))
5 dcubic.d . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
65halfcld 12394 . . . . . . . 8 (𝜑 → (𝑄 / 2) ∈ ℂ)
74, 6eqeltrd 2838 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
8 binom2sub 14115 . . . . . . 7 ((𝐺 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
93, 7, 8syl2anc 584 . . . . . 6 (𝜑 → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
10 dcubic.2 . . . . . . . 8 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
11 2cnd 12227 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
1211, 3, 7mul12d 11360 . . . . . . . . 9 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝐺 · (2 · 𝑁)))
134oveq2d 7369 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (2 · (𝑄 / 2)))
14 2ne0 12253 . . . . . . . . . . . . 13 2 ≠ 0
1514a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
165, 11, 15divcan2d 11929 . . . . . . . . . . 11 (𝜑 → (2 · (𝑄 / 2)) = 𝑄)
1713, 16eqtrd 2776 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = 𝑄)
1817oveq2d 7369 . . . . . . . . 9 (𝜑 → (𝐺 · (2 · 𝑁)) = (𝐺 · 𝑄))
193, 5mulcomd 11172 . . . . . . . . 9 (𝜑 → (𝐺 · 𝑄) = (𝑄 · 𝐺))
2012, 18, 193eqtrd 2780 . . . . . . . 8 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝑄 · 𝐺))
2110, 20oveq12d 7371 . . . . . . 7 (𝜑 → ((𝐺↑2) − (2 · (𝐺 · 𝑁))) = (((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)))
2221oveq1d 7368 . . . . . 6 (𝜑 → (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
232, 9, 223eqtrd 2780 . . . . 5 (𝜑 → ((𝑇↑3)↑2) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
247sqcld 14041 . . . . . . 7 (𝜑 → (𝑁↑2) ∈ ℂ)
25 dcubic.m . . . . . . . . 9 (𝜑𝑀 = (𝑃 / 3))
26 dcubic.c . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
27 3cn 12230 . . . . . . . . . . 11 3 ∈ ℂ
2827a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
29 3ne0 12255 . . . . . . . . . . 11 3 ≠ 0
3029a1i 11 . . . . . . . . . 10 (𝜑 → 3 ≠ 0)
3126, 28, 30divcld 11927 . . . . . . . . 9 (𝜑 → (𝑃 / 3) ∈ ℂ)
3225, 31eqeltrd 2838 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
33 3nn0 12427 . . . . . . . 8 3 ∈ ℕ0
34 expcl 13977 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
3532, 33, 34sylancl 586 . . . . . . 7 (𝜑 → (𝑀↑3) ∈ ℂ)
3624, 35addcld 11170 . . . . . 6 (𝜑 → ((𝑁↑2) + (𝑀↑3)) ∈ ℂ)
375, 3mulcld 11171 . . . . . 6 (𝜑 → (𝑄 · 𝐺) ∈ ℂ)
3836, 24, 37addsubd 11529 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
3924, 35, 24add32d 11378 . . . . . . 7 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
40242timesd 12392 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2)))
4140oveq1d 7368 . . . . . . 7 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
4239, 41eqtr4d 2779 . . . . . 6 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = ((2 · (𝑁↑2)) + (𝑀↑3)))
4342oveq1d 7368 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
4423, 38, 433eqtr2d 2782 . . . 4 (𝜑 → ((𝑇↑3)↑2) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
455, 3, 7subdid 11607 . . . . . . 7 (𝜑 → (𝑄 · (𝐺𝑁)) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
461oveq2d 7369 . . . . . . 7 (𝜑 → (𝑄 · (𝑇↑3)) = (𝑄 · (𝐺𝑁)))
477sqvald 14040 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
4847oveq2d 7369 . . . . . . . . 9 (𝜑 → (2 · (𝑁↑2)) = (2 · (𝑁 · 𝑁)))
4911, 7, 7mulassd 11174 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (2 · (𝑁 · 𝑁)))
5017oveq1d 7368 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (𝑄 · 𝑁))
5148, 49, 503eqtr2d 2782 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = (𝑄 · 𝑁))
5251oveq2d 7369 . . . . . . 7 (𝜑 → ((𝑄 · 𝐺) − (2 · (𝑁↑2))) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
5345, 46, 523eqtr4d 2786 . . . . . 6 (𝜑 → (𝑄 · (𝑇↑3)) = ((𝑄 · 𝐺) − (2 · (𝑁↑2))))
5453oveq1d 7368 . . . . 5 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)))
55 2cn 12224 . . . . . . 7 2 ∈ ℂ
56 mulcl 11131 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑁↑2) ∈ ℂ) → (2 · (𝑁↑2)) ∈ ℂ)
5755, 24, 56sylancr 587 . . . . . 6 (𝜑 → (2 · (𝑁↑2)) ∈ ℂ)
5837, 57, 35subsub4d 11539 . . . . 5 (𝜑 → (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
5954, 58eqtrd 2776 . . . 4 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
6044, 59oveq12d 7371 . . 3 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))))
6157, 35addcld 11170 . . . 4 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ)
62 npncan2 11424 . . . 4 ((((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ ∧ (𝑄 · 𝐺) ∈ ℂ) → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6361, 37, 62syl2anc 584 . . 3 (𝜑 → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6460, 63eqtrd 2776 . 2 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0)
65 dcubic.x . . 3 (𝜑𝑋 ∈ ℂ)
66 dcubic.t . . 3 (𝜑𝑇 ∈ ℂ)
67 dcubic.0 . . 3 (𝜑𝑇 ≠ 0)
68 dcubic1.x . . 3 (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
6926, 5, 65, 66, 1, 3, 10, 25, 4, 67, 66, 67, 68dcubic1lem 26177 . 2 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0))
7064, 69mpbird 256 1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2941  (class class class)co 7353  cc 11045  0cc0 11047   + caddc 11050   · cmul 11052  cmin 11381   / cdiv 11808  2c2 12204  3c3 12205  0cn0 12409  cexp 13959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-4 12214  df-n0 12410  df-z 12496  df-uz 12760  df-rp 12908  df-seq 13899  df-exp 13960  df-dvds 16129
This theorem is referenced by:  dcubic  26180
  Copyright terms: Public domain W3C validator