MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1 Structured version   Visualization version   GIF version

Theorem dcubic1 26762
Description: Forward direction of dcubic 26763: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c (𝜑𝑃 ∈ ℂ)
dcubic.d (𝜑𝑄 ∈ ℂ)
dcubic.x (𝜑𝑋 ∈ ℂ)
dcubic.t (𝜑𝑇 ∈ ℂ)
dcubic.3 (𝜑 → (𝑇↑3) = (𝐺𝑁))
dcubic.g (𝜑𝐺 ∈ ℂ)
dcubic.2 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
dcubic.m (𝜑𝑀 = (𝑃 / 3))
dcubic.n (𝜑𝑁 = (𝑄 / 2))
dcubic.0 (𝜑𝑇 ≠ 0)
dcubic1.x (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
Assertion
Ref Expression
dcubic1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)

Proof of Theorem dcubic1
StepHypRef Expression
1 dcubic.3 . . . . . . 7 (𝜑 → (𝑇↑3) = (𝐺𝑁))
21oveq1d 7405 . . . . . 6 (𝜑 → ((𝑇↑3)↑2) = ((𝐺𝑁)↑2))
3 dcubic.g . . . . . . 7 (𝜑𝐺 ∈ ℂ)
4 dcubic.n . . . . . . . 8 (𝜑𝑁 = (𝑄 / 2))
5 dcubic.d . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
65halfcld 12434 . . . . . . . 8 (𝜑 → (𝑄 / 2) ∈ ℂ)
74, 6eqeltrd 2829 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
8 binom2sub 14192 . . . . . . 7 ((𝐺 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
93, 7, 8syl2anc 584 . . . . . 6 (𝜑 → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
10 dcubic.2 . . . . . . . 8 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
11 2cnd 12271 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
1211, 3, 7mul12d 11390 . . . . . . . . 9 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝐺 · (2 · 𝑁)))
134oveq2d 7406 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (2 · (𝑄 / 2)))
14 2ne0 12297 . . . . . . . . . . . . 13 2 ≠ 0
1514a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
165, 11, 15divcan2d 11967 . . . . . . . . . . 11 (𝜑 → (2 · (𝑄 / 2)) = 𝑄)
1713, 16eqtrd 2765 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = 𝑄)
1817oveq2d 7406 . . . . . . . . 9 (𝜑 → (𝐺 · (2 · 𝑁)) = (𝐺 · 𝑄))
193, 5mulcomd 11202 . . . . . . . . 9 (𝜑 → (𝐺 · 𝑄) = (𝑄 · 𝐺))
2012, 18, 193eqtrd 2769 . . . . . . . 8 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝑄 · 𝐺))
2110, 20oveq12d 7408 . . . . . . 7 (𝜑 → ((𝐺↑2) − (2 · (𝐺 · 𝑁))) = (((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)))
2221oveq1d 7405 . . . . . 6 (𝜑 → (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
232, 9, 223eqtrd 2769 . . . . 5 (𝜑 → ((𝑇↑3)↑2) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
247sqcld 14116 . . . . . . 7 (𝜑 → (𝑁↑2) ∈ ℂ)
25 dcubic.m . . . . . . . . 9 (𝜑𝑀 = (𝑃 / 3))
26 dcubic.c . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
27 3cn 12274 . . . . . . . . . . 11 3 ∈ ℂ
2827a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
29 3ne0 12299 . . . . . . . . . . 11 3 ≠ 0
3029a1i 11 . . . . . . . . . 10 (𝜑 → 3 ≠ 0)
3126, 28, 30divcld 11965 . . . . . . . . 9 (𝜑 → (𝑃 / 3) ∈ ℂ)
3225, 31eqeltrd 2829 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
33 3nn0 12467 . . . . . . . 8 3 ∈ ℕ0
34 expcl 14051 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
3532, 33, 34sylancl 586 . . . . . . 7 (𝜑 → (𝑀↑3) ∈ ℂ)
3624, 35addcld 11200 . . . . . 6 (𝜑 → ((𝑁↑2) + (𝑀↑3)) ∈ ℂ)
375, 3mulcld 11201 . . . . . 6 (𝜑 → (𝑄 · 𝐺) ∈ ℂ)
3836, 24, 37addsubd 11561 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
3924, 35, 24add32d 11409 . . . . . . 7 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
40242timesd 12432 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2)))
4140oveq1d 7405 . . . . . . 7 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
4239, 41eqtr4d 2768 . . . . . 6 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = ((2 · (𝑁↑2)) + (𝑀↑3)))
4342oveq1d 7405 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
4423, 38, 433eqtr2d 2771 . . . 4 (𝜑 → ((𝑇↑3)↑2) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
455, 3, 7subdid 11641 . . . . . . 7 (𝜑 → (𝑄 · (𝐺𝑁)) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
461oveq2d 7406 . . . . . . 7 (𝜑 → (𝑄 · (𝑇↑3)) = (𝑄 · (𝐺𝑁)))
477sqvald 14115 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
4847oveq2d 7406 . . . . . . . . 9 (𝜑 → (2 · (𝑁↑2)) = (2 · (𝑁 · 𝑁)))
4911, 7, 7mulassd 11204 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (2 · (𝑁 · 𝑁)))
5017oveq1d 7405 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (𝑄 · 𝑁))
5148, 49, 503eqtr2d 2771 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = (𝑄 · 𝑁))
5251oveq2d 7406 . . . . . . 7 (𝜑 → ((𝑄 · 𝐺) − (2 · (𝑁↑2))) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
5345, 46, 523eqtr4d 2775 . . . . . 6 (𝜑 → (𝑄 · (𝑇↑3)) = ((𝑄 · 𝐺) − (2 · (𝑁↑2))))
5453oveq1d 7405 . . . . 5 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)))
55 2cn 12268 . . . . . . 7 2 ∈ ℂ
56 mulcl 11159 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑁↑2) ∈ ℂ) → (2 · (𝑁↑2)) ∈ ℂ)
5755, 24, 56sylancr 587 . . . . . 6 (𝜑 → (2 · (𝑁↑2)) ∈ ℂ)
5837, 57, 35subsub4d 11571 . . . . 5 (𝜑 → (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
5954, 58eqtrd 2765 . . . 4 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
6044, 59oveq12d 7408 . . 3 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))))
6157, 35addcld 11200 . . . 4 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ)
62 npncan2 11456 . . . 4 ((((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ ∧ (𝑄 · 𝐺) ∈ ℂ) → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6361, 37, 62syl2anc 584 . . 3 (𝜑 → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6460, 63eqtrd 2765 . 2 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0)
65 dcubic.x . . 3 (𝜑𝑋 ∈ ℂ)
66 dcubic.t . . 3 (𝜑𝑇 ∈ ℂ)
67 dcubic.0 . . 3 (𝜑𝑇 ≠ 0)
68 dcubic1.x . . 3 (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
6926, 5, 65, 66, 1, 3, 10, 25, 4, 67, 66, 67, 68dcubic1lem 26760 . 2 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0))
7064, 69mpbird 257 1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7390  cc 11073  0cc0 11075   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  2c2 12248  3c3 12249  0cn0 12449  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-dvds 16230
This theorem is referenced by:  dcubic  26763
  Copyright terms: Public domain W3C validator