Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrcomland Structured version   Visualization version   GIF version

Theorem cgrcomland 32981
Description: Deduction form of cgrcoml 32978. (Contributed by Scott Fenton, 14-Oct-2013.)
Hypotheses
Ref Expression
cgrcomlrand.1 (𝜑𝑁 ∈ ℕ)
cgrcomlrand.2 (𝜑𝐴 ∈ (𝔼‘𝑁))
cgrcomlrand.3 (𝜑𝐵 ∈ (𝔼‘𝑁))
cgrcomlrand.4 (𝜑𝐶 ∈ (𝔼‘𝑁))
cgrcomlrand.5 (𝜑𝐷 ∈ (𝔼‘𝑁))
cgrcomlrand.6 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
Assertion
Ref Expression
cgrcomland ((𝜑𝜓) → ⟨𝐵, 𝐴⟩Cgr⟨𝐶, 𝐷⟩)

Proof of Theorem cgrcomland
StepHypRef Expression
1 cgrcomlrand.6 . 2 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
2 cgrcomlrand.1 . . . 4 (𝜑𝑁 ∈ ℕ)
3 cgrcomlrand.2 . . . 4 (𝜑𝐴 ∈ (𝔼‘𝑁))
4 cgrcomlrand.3 . . . 4 (𝜑𝐵 ∈ (𝔼‘𝑁))
5 cgrcomlrand.4 . . . 4 (𝜑𝐶 ∈ (𝔼‘𝑁))
6 cgrcomlrand.5 . . . 4 (𝜑𝐷 ∈ (𝔼‘𝑁))
7 cgrcoml 32978 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐵, 𝐴⟩Cgr⟨𝐶, 𝐷⟩))
82, 3, 4, 5, 6, 7syl122anc 1359 . . 3 (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐵, 𝐴⟩Cgr⟨𝐶, 𝐷⟩))
98adantr 473 . 2 ((𝜑𝜓) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐵, 𝐴⟩Cgr⟨𝐶, 𝐷⟩))
101, 9mpbid 224 1 ((𝜑𝜓) → ⟨𝐵, 𝐴⟩Cgr⟨𝐶, 𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wcel 2050  cop 4441   class class class wbr 4923  cfv 6182  cn 11433  𝔼cee 26371  Cgrccgr 26373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-2 11497  df-n0 11702  df-z 11788  df-uz 12053  df-fz 12703  df-seq 13179  df-exp 13239  df-sum 14898  df-ee 26374  df-cgr 26376
This theorem is referenced by:  cgrcomlrand  32983  btwnconn1lem1  33069  btwnconn1lem3  33071  btwnconn1lem4  33072
  Copyright terms: Public domain W3C validator