Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrcomlrand Structured version   Visualization version   GIF version

Theorem cgrcomlrand 34045
Description: Deduction form of cgrcomlr 34042. (Contributed by Scott Fenton, 14-Oct-2013.)
Hypotheses
Ref Expression
cgrcomlrand.1 (𝜑𝑁 ∈ ℕ)
cgrcomlrand.2 (𝜑𝐴 ∈ (𝔼‘𝑁))
cgrcomlrand.3 (𝜑𝐵 ∈ (𝔼‘𝑁))
cgrcomlrand.4 (𝜑𝐶 ∈ (𝔼‘𝑁))
cgrcomlrand.5 (𝜑𝐷 ∈ (𝔼‘𝑁))
cgrcomlrand.6 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
Assertion
Ref Expression
cgrcomlrand ((𝜑𝜓) → ⟨𝐵, 𝐴⟩Cgr⟨𝐷, 𝐶⟩)

Proof of Theorem cgrcomlrand
StepHypRef Expression
1 cgrcomlrand.1 . 2 (𝜑𝑁 ∈ ℕ)
2 cgrcomlrand.2 . 2 (𝜑𝐴 ∈ (𝔼‘𝑁))
3 cgrcomlrand.3 . 2 (𝜑𝐵 ∈ (𝔼‘𝑁))
4 cgrcomlrand.5 . 2 (𝜑𝐷 ∈ (𝔼‘𝑁))
5 cgrcomlrand.4 . 2 (𝜑𝐶 ∈ (𝔼‘𝑁))
6 cgrcomlrand.6 . . 3 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
71, 2, 3, 5, 4, 6cgrcomrand 34044 . 2 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐶⟩)
81, 2, 3, 4, 5, 7cgrcomland 34043 1 ((𝜑𝜓) → ⟨𝐵, 𝐴⟩Cgr⟨𝐷, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110  cop 4552   class class class wbr 5058  cfv 6385  cn 11835  𝔼cee 26984  Cgrccgr 26986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-er 8396  df-map 8515  df-en 8632  df-dom 8633  df-sdom 8634  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-nn 11836  df-2 11898  df-n0 12096  df-z 12182  df-uz 12444  df-fz 13101  df-seq 13580  df-exp 13641  df-sum 15255  df-ee 26987  df-cgr 26989
This theorem is referenced by:  ifscgr  34088  btwnxfr  34100  btwnconn1lem1  34131  btwnconn1lem5  34135  btwnconn1lem6  34136  btwnconn1lem12  34142
  Copyright terms: Public domain W3C validator