Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cgrcomlrand | Structured version Visualization version GIF version |
Description: Deduction form of cgrcomlr 34042. (Contributed by Scott Fenton, 14-Oct-2013.) |
Ref | Expression |
---|---|
cgrcomlrand.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cgrcomlrand.2 | ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) |
cgrcomlrand.3 | ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) |
cgrcomlrand.4 | ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) |
cgrcomlrand.5 | ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) |
cgrcomlrand.6 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) |
Ref | Expression |
---|---|
cgrcomlrand | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgrcomlrand.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | cgrcomlrand.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) | |
3 | cgrcomlrand.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) | |
4 | cgrcomlrand.5 | . 2 ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) | |
5 | cgrcomlrand.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) | |
6 | cgrcomlrand.6 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) | |
7 | 1, 2, 3, 5, 4, 6 | cgrcomrand 34044 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉) |
8 | 1, 2, 3, 4, 5, 7 | cgrcomland 34043 | 1 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 〈cop 4552 class class class wbr 5058 ‘cfv 6385 ℕcn 11835 𝔼cee 26984 Cgrccgr 26986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-map 8515 df-en 8632 df-dom 8633 df-sdom 8634 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-nn 11836 df-2 11898 df-n0 12096 df-z 12182 df-uz 12444 df-fz 13101 df-seq 13580 df-exp 13641 df-sum 15255 df-ee 26987 df-cgr 26989 |
This theorem is referenced by: ifscgr 34088 btwnxfr 34100 btwnconn1lem1 34131 btwnconn1lem5 34135 btwnconn1lem6 34136 btwnconn1lem12 34142 |
Copyright terms: Public domain | W3C validator |