![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absresq | Structured version Visualization version GIF version |
Description: Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.) |
Ref | Expression |
---|---|
absresq | โข (๐ด โ โ โ ((absโ๐ด)โ2) = (๐ดโ2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjre 15090 | . . 3 โข (๐ด โ โ โ (โโ๐ด) = ๐ด) | |
2 | 1 | oveq2d 7427 | . 2 โข (๐ด โ โ โ (๐ด ยท (โโ๐ด)) = (๐ด ยท ๐ด)) |
3 | recn 11202 | . . 3 โข (๐ด โ โ โ ๐ด โ โ) | |
4 | absvalsq 15231 | . . 3 โข (๐ด โ โ โ ((absโ๐ด)โ2) = (๐ด ยท (โโ๐ด))) | |
5 | 3, 4 | syl 17 | . 2 โข (๐ด โ โ โ ((absโ๐ด)โ2) = (๐ด ยท (โโ๐ด))) |
6 | 3 | sqvald 14112 | . 2 โข (๐ด โ โ โ (๐ดโ2) = (๐ด ยท ๐ด)) |
7 | 2, 5, 6 | 3eqtr4d 2782 | 1 โข (๐ด โ โ โ ((absโ๐ด)โ2) = (๐ดโ2)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โcfv 6543 (class class class)co 7411 โcc 11110 โcr 11111 ยท cmul 11117 2c2 12271 โcexp 14031 โccj 15047 abscabs 15185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 |
This theorem is referenced by: lenegsq 15271 sqnprm 16643 zgcdsq 16693 zringunit 21237 trirn 25141 rrxdstprj1 25150 tanregt0 26272 chordthmlem4 26564 heron 26567 lgsne0 27062 lgssq 27064 lgssq2 27065 lgsqr 27078 lgsquad3 27114 2sqblem 27158 sqsscirc2 33175 sinccvglem 34943 dvasin 36875 areacirclem1 36879 areacirclem2 36880 areacirclem4 36882 areacirclem5 36883 areacirc 36884 cntotbnd 36967 rrndstprj1 37001 rrndstprj2 37002 ismrer1 37009 dffltz 41678 pellexlem6 41874 pell14qrgt0 41899 abslt2sqd 44369 rrndistlt 45305 |
Copyright terms: Public domain | W3C validator |