Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congadd Structured version   Visualization version   GIF version

Theorem congadd 42418
Description: If two pairs of numbers are componentwise congruent, so are their sums. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
congadd (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 + 𝐷) − (𝐶 + 𝐸)))

Proof of Theorem congadd
StepHypRef Expression
1 simpl1 1188 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → 𝐴 ∈ ℤ)
2 zsubcl 12642 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
323adant1 1127 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐶) ∈ ℤ)
43adantr 479 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → (𝐵𝐶) ∈ ℤ)
5 zsubcl 12642 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) → (𝐷𝐸) ∈ ℤ)
65adantl 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → (𝐷𝐸) ∈ ℤ)
7 dvds2add 16274 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ (𝐷𝐸) ∈ ℤ) → ((𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸)) → 𝐴 ∥ ((𝐵𝐶) + (𝐷𝐸))))
81, 4, 6, 7syl3anc 1368 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → ((𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸)) → 𝐴 ∥ ((𝐵𝐶) + (𝐷𝐸))))
983impia 1114 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵𝐶) + (𝐷𝐸)))
10 simpl2 1189 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → 𝐵 ∈ ℤ)
1110zcnd 12705 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → 𝐵 ∈ ℂ)
12 zcn 12601 . . . . 5 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
1312ad2antrl 726 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → 𝐷 ∈ ℂ)
14 simpl3 1190 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → 𝐶 ∈ ℤ)
1514zcnd 12705 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → 𝐶 ∈ ℂ)
16 zcn 12601 . . . . 5 (𝐸 ∈ ℤ → 𝐸 ∈ ℂ)
1716ad2antll 727 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → 𝐸 ∈ ℂ)
1811, 13, 15, 17addsub4d 11656 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ)) → ((𝐵 + 𝐷) − (𝐶 + 𝐸)) = ((𝐵𝐶) + (𝐷𝐸)))
19183adant3 1129 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → ((𝐵 + 𝐷) − (𝐶 + 𝐸)) = ((𝐵𝐶) + (𝐷𝐸)))
209, 19breqtrrd 5180 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 + 𝐷) − (𝐶 + 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5152  (class class class)co 7426  cc 11144   + caddc 11149  cmin 11482  cz 12596  cdvds 16238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-dvds 16239
This theorem is referenced by:  congsub  42422  mzpcong  42424  jm2.18  42440  jm2.27c  42459
  Copyright terms: Public domain W3C validator