Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
(class class class)co 7409 ℂcc 11108
2c2 12267 ↑cexp 14027 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275
df-n0 12473 df-z 12559
df-uz 12823 df-seq 13967 df-exp 14028 |
This theorem is referenced by: mulsubdivbinom2
14222 muldivbinom2
14223 recval
15269 bhmafibid1cn
15410 bhmafibid2cn
15411 bhmafibid2
15413 arisum2
15807 fsumcube
16004 efi4p
16080 sincossq
16119 cos2t
16121 cos2tsin
16122 sqrt2irrlem
16191 pythagtriplem1
16749 pythagtriplem2
16750 pythagtriplem6
16754 pythagtriplem7
16755 pythagtriplem12
16759 pythagtriplem14
16761 4sqlem7
16877 4sqlem10
16880 4sqlem14
16891 4cphipval2
24759 csbren
24916 rrxmval
24922 rrxmetlem
24924 dvrecg
25490 dvmptdiv
25491 dveflem
25496 coskpi
26032 coseq1
26034 tanregt0
26048 efif1olem4
26054 tanarg
26127 lawcoslem1
26320 lawcos
26321 pythag
26322 ssscongptld
26327 chordthmlem3
26339 chordthmlem4
26340 chordthmlem5
26341 heron
26343 quad2
26344 quad
26345 dcubic1lem
26348 dcubic2
26349 dcubic1
26350 dcubic
26351 mcubic
26352 cubic2
26353 cubic
26354 binom4
26355 dquartlem1
26356 dquartlem2
26357 dquart
26358 quart1cl
26359 quart1lem
26360 quart1
26361 quartlem1
26362 quartlem2
26363 quartlem4
26365 quart
26366 asinlem3
26376 asinneg
26391 asinsin
26397 atandmcj
26414 efiatan2
26422 atandmtan
26425 cosatan
26426 cosatanne0
26427 dvatan
26440 cxp2limlem
26480 lgamgulmlem4
26536 basellem8
26592 lgsdir
26835 2sqlem4
26924 2sqlem11
26932 2sqn0
26937 2sqmod
26939 2sqnn
26942 addsq2reu
26943 2sqreultlem
26950 2sqreunnltlem
26953 2sqreulem2
26955 mulog2sumlem2
27038 mulog2sumlem3
27039 logsqvma
27045 selberglem1
27048 selberglem3
27050 selberg
27051 logdivbnd
27059 pntlemf
27108 pntlemk
27109 pntlemo
27110 ax5seglem1
28186 ax5seglem2
28187 ax5seglem6
28192 ax5seglem9
28195 axlowdimlem16
28215 axlowdimlem17
28216 4ipval2
29961 ipidsq
29963 cncph
30072 hhph
30431 eigvalcl
31214 circlemethhgt
33655 hgt750leme
33670 sin2h
36478 cos2h
36479 tan2h
36480 dvtan
36538 dvasin
36572 dvacos
36573 areacirclem1
36576 areacirclem2
36577 areacirclem4
36579 areacirc
36581 ismrer1
36706 aks4d1p1p2
40935 aks4d1p1p6
40938 aks4d1p1p7
40939 aks4d1p1p5
40940 oddnumth
41209 nicomachus
41210 sumcubes
41211 cu3addd
41418 3cubeslem2
41423 3cubeslem3l
41424 3cubeslem3r
41425 3cubeslem4
41427 pellexlem1
41567 pellexlem2
41568 pellexlem6
41572 pell1qrge1
41608 pell1qrgaplem
41611 rmspecsqrtnq
41644 rmxdbl
41678 jm2.18
41727 jm2.19lem1
41728 jm2.25
41738 jm2.27c
41746 sqrtcval
42392 dvdivf
44638 dvdivbd
44639 itgsinexplem1
44670 itgsinexp
44671 wallispi2lem1
44787 wallispi2lem2
44788 wallispi2
44789 stirlinglem1
44790 stirlinglem3
44792 stirlinglem8
44797 stirlinglem10
44799 stirlinglem15
44804 rrxtopnfi
45003 hoiqssbllem2
45339 quad1
46288 itschlc0yqe
47446 itsclc0yqsollem1
47448 itsclc0yqsol
47450 itscnhlc0xyqsol
47451 itschlc0xyqsol1
47452 itschlc0xyqsol
47453 itsclc0xyqsolr
47455 2itscplem1
47464 2itscplem3
47466 itscnhlinecirc02plem1
47468 onetansqsecsq
47806 cotsqcscsq
47807 |