Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
(class class class)co 7405 ℂcc 11104
2c2 12263 ↑cexp 14023 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271
df-n0 12469 df-z 12555
df-uz 12819 df-seq 13963 df-exp 14024 |
This theorem is referenced by: mulsubdivbinom2
14218 muldivbinom2
14219 recval
15265 bhmafibid1cn
15406 bhmafibid2cn
15407 bhmafibid2
15409 arisum2
15803 fsumcube
16000 efi4p
16076 sincossq
16115 cos2t
16117 cos2tsin
16118 sqrt2irrlem
16187 pythagtriplem1
16745 pythagtriplem2
16746 pythagtriplem6
16750 pythagtriplem7
16751 pythagtriplem12
16755 pythagtriplem14
16757 4sqlem7
16873 4sqlem10
16876 4sqlem14
16887 4cphipval2
24750 csbren
24907 rrxmval
24913 rrxmetlem
24915 dvrecg
25481 dvmptdiv
25482 dveflem
25487 coskpi
26023 coseq1
26025 tanregt0
26039 efif1olem4
26045 tanarg
26118 lawcoslem1
26309 lawcos
26310 pythag
26311 ssscongptld
26316 chordthmlem3
26328 chordthmlem4
26329 chordthmlem5
26330 heron
26332 quad2
26333 quad
26334 dcubic1lem
26337 dcubic2
26338 dcubic1
26339 dcubic
26340 mcubic
26341 cubic2
26342 cubic
26343 binom4
26344 dquartlem1
26345 dquartlem2
26346 dquart
26347 quart1cl
26348 quart1lem
26349 quart1
26350 quartlem1
26351 quartlem2
26352 quartlem4
26354 quart
26355 asinlem3
26365 asinneg
26380 asinsin
26386 atandmcj
26403 efiatan2
26411 atandmtan
26414 cosatan
26415 cosatanne0
26416 dvatan
26429 cxp2limlem
26469 lgamgulmlem4
26525 basellem8
26581 lgsdir
26824 2sqlem4
26913 2sqlem11
26921 2sqn0
26926 2sqmod
26928 2sqnn
26931 addsq2reu
26932 2sqreultlem
26939 2sqreunnltlem
26942 2sqreulem2
26944 mulog2sumlem2
27027 mulog2sumlem3
27028 logsqvma
27034 selberglem1
27037 selberglem3
27039 selberg
27040 logdivbnd
27048 pntlemf
27097 pntlemk
27098 pntlemo
27099 ax5seglem1
28175 ax5seglem2
28176 ax5seglem6
28181 ax5seglem9
28184 axlowdimlem16
28204 axlowdimlem17
28205 4ipval2
29948 ipidsq
29950 cncph
30059 hhph
30418 eigvalcl
31201 circlemethhgt
33643 hgt750leme
33658 sin2h
36466 cos2h
36467 tan2h
36468 dvtan
36526 dvasin
36560 dvacos
36561 areacirclem1
36564 areacirclem2
36565 areacirclem4
36567 areacirc
36569 ismrer1
36694 aks4d1p1p2
40923 aks4d1p1p6
40926 aks4d1p1p7
40927 aks4d1p1p5
40928 oddnumth
41204 nicomachus
41205 sumcubes
41206 cu3addd
41403 3cubeslem2
41408 3cubeslem3l
41409 3cubeslem3r
41410 3cubeslem4
41412 pellexlem1
41552 pellexlem2
41553 pellexlem6
41557 pell1qrge1
41593 pell1qrgaplem
41596 rmspecsqrtnq
41629 rmxdbl
41663 jm2.18
41712 jm2.19lem1
41713 jm2.25
41723 jm2.27c
41731 sqrtcval
42377 dvdivf
44624 dvdivbd
44625 itgsinexplem1
44656 itgsinexp
44657 wallispi2lem1
44773 wallispi2lem2
44774 wallispi2
44775 stirlinglem1
44776 stirlinglem3
44778 stirlinglem8
44783 stirlinglem10
44785 stirlinglem15
44790 rrxtopnfi
44989 hoiqssbllem2
45325 quad1
46274 itschlc0yqe
47399 itsclc0yqsollem1
47401 itsclc0yqsol
47403 itscnhlc0xyqsol
47404 itschlc0xyqsol1
47405 itschlc0xyqsol
47406 itsclc0xyqsolr
47408 2itscplem1
47417 2itscplem3
47419 itscnhlinecirc02plem1
47421 onetansqsecsq
47759 cotsqcscsq
47760 |