![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrelbas | Structured version Visualization version GIF version |
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of ℂ, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrval.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrval.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrval.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrval.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchrbas.b | ⊢ 𝐷 = (Base‘𝐺) |
Ref | Expression |
---|---|
dchrelbas | ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrval.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrval.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑍) | |
4 | dchrval.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
5 | dchrval.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | dchrbas.b | . . . 4 ⊢ 𝐷 = (Base‘𝐺) | |
7 | 1, 2, 3, 4, 5, 6 | dchrbas 26738 | . . 3 ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥}) |
8 | 7 | eleq2d 2820 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ 𝑋 ∈ {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥})) |
9 | sseq2 4009 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥 ↔ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑋)) | |
10 | 9 | elrab 3684 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑥} ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑋)) |
11 | 8, 10 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵 ∖ 𝑈) × {0}) ⊆ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 ∖ cdif 3946 ⊆ wss 3949 {csn 4629 × cxp 5675 ‘cfv 6544 (class class class)co 7409 0cc0 11110 ℕcn 12212 Basecbs 17144 MndHom cmhm 18669 mulGrpcmgp 19987 Unitcui 20169 ℂfldccnfld 20944 ℤ/nℤczn 21052 DChrcdchr 26735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-dchr 26736 |
This theorem is referenced by: dchrelbas2 26740 dchrmhm 26744 |
Copyright terms: Public domain | W3C validator |