MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec0u Structured version   Visualization version   GIF version

Theorem dec0u 11927
Description: Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypothesis
Ref Expression
dec0u.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
dec0u (10 · 𝐴) = 𝐴0

Proof of Theorem dec0u
StepHypRef Expression
1 10nn0 11923 . . 3 10 ∈ ℕ0
2 dec0u.1 . . 3 𝐴 ∈ ℕ0
31, 2num0u 11916 . 2 (10 · 𝐴) = ((10 · 𝐴) + 0)
4 dfdec10 11908 . 2 𝐴0 = ((10 · 𝐴) + 0)
53, 4eqtr4i 2799 1 (10 · 𝐴) = 𝐴0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  (class class class)co 6970  0cc0 10329  1c1 10330   + caddc 10332   · cmul 10334  0cn0 11701  cdc 11905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-om 7391  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-ltxr 10473  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-dec 11906
This theorem is referenced by:  decmul10add  11976  5t5e25  12010  6t6e36  12015  8t6e48  12026  sq10  13433  2503lem1  16320  4001lem1  16324  4001lem3  16326  bclbnd  25552  bposlem8  25563  dfdec100  30293  dpmul100  30320  dpmul1000  30322  dpmul  30336  dpmul4  30337  decpmul  38606  sqdeccom12  38607  41prothprmlem1  43150
  Copyright terms: Public domain W3C validator