Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsacongtr Structured version   Visualization version   GIF version

Theorem dvdsacongtr 39574
Description: Alternating congruence passes from a base to a dividing base. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
dvdsacongtr (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐷𝐴 ∧ (𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)))) → (𝐷 ∥ (𝐵𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶)))

Proof of Theorem dvdsacongtr
StepHypRef Expression
1 simplr 767 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐷𝐴)
2 simpr 487 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∥ (𝐵𝐶))
3 simprr 771 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐷 ∈ ℤ)
43ad2antrr 724 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐷 ∈ ℤ)
5 simp-4l 781 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∈ ℤ)
6 simplr 767 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐵 ∈ ℤ)
76ad2antrr 724 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐵 ∈ ℤ)
8 simprl 769 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐶 ∈ ℤ)
98ad2antrr 724 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐶 ∈ ℤ)
107, 9zsubcld 12086 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → (𝐵𝐶) ∈ ℤ)
11 dvdstr 15640 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ) → ((𝐷𝐴𝐴 ∥ (𝐵𝐶)) → 𝐷 ∥ (𝐵𝐶)))
124, 5, 10, 11syl3anc 1367 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → ((𝐷𝐴𝐴 ∥ (𝐵𝐶)) → 𝐷 ∥ (𝐵𝐶)))
131, 2, 12mp2and 697 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐷 ∥ (𝐵𝐶))
1413ex 415 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) → (𝐴 ∥ (𝐵𝐶) → 𝐷 ∥ (𝐵𝐶)))
15 simplr 767 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐷𝐴)
16 simpr 487 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐴 ∥ (𝐵 − -𝐶))
173ad2antrr 724 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐷 ∈ ℤ)
18 simp-4l 781 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐴 ∈ ℤ)
196ad2antrr 724 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐵 ∈ ℤ)
208ad2antrr 724 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐶 ∈ ℤ)
2120znegcld 12083 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → -𝐶 ∈ ℤ)
2219, 21zsubcld 12086 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → (𝐵 − -𝐶) ∈ ℤ)
23 dvdstr 15640 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐵 − -𝐶) ∈ ℤ) → ((𝐷𝐴𝐴 ∥ (𝐵 − -𝐶)) → 𝐷 ∥ (𝐵 − -𝐶)))
2417, 18, 22, 23syl3anc 1367 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → ((𝐷𝐴𝐴 ∥ (𝐵 − -𝐶)) → 𝐷 ∥ (𝐵 − -𝐶)))
2515, 16, 24mp2and 697 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐷 ∥ (𝐵 − -𝐶))
2625ex 415 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) → (𝐴 ∥ (𝐵 − -𝐶) → 𝐷 ∥ (𝐵 − -𝐶)))
2714, 26orim12d 961 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) → ((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) → (𝐷 ∥ (𝐵𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶))))
2827expimpd 456 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐷𝐴 ∧ (𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) → (𝐷 ∥ (𝐵𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶))))
29283impia 1113 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐷𝐴 ∧ (𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)))) → (𝐷 ∥ (𝐵𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083  wcel 2110   class class class wbr 5058  (class class class)co 7150  cmin 10864  -cneg 10865  cz 11975  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-dvds 15602
This theorem is referenced by:  jm2.27a  39595
  Copyright terms: Public domain W3C validator