MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlem Structured version   Visualization version   GIF version

Theorem dvlem 25813
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvlem.1 (𝜑𝐹:𝐷⟶ℂ)
dvlem.2 (𝜑𝐷 ⊆ ℂ)
dvlem.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
dvlem ((𝜑𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)

Proof of Theorem dvlem
StepHypRef Expression
1 eldifsn 4740 . 2 (𝐴 ∈ (𝐷 ∖ {𝐵}) ↔ (𝐴𝐷𝐴𝐵))
2 dvlem.1 . . . . . 6 (𝜑𝐹:𝐷⟶ℂ)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐹:𝐷⟶ℂ)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴𝐷)
53, 4ffvelcdmd 7023 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐹𝐴) ∈ ℂ)
6 dvlem.3 . . . . . 6 (𝜑𝐵𝐷)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐵𝐷)
83, 7ffvelcdmd 7023 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐹𝐵) ∈ ℂ)
95, 8subcld 11493 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → ((𝐹𝐴) − (𝐹𝐵)) ∈ ℂ)
10 dvlem.2 . . . . . 6 (𝜑𝐷 ⊆ ℂ)
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐷 ⊆ ℂ)
1211, 4sseldd 3938 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴 ∈ ℂ)
1311, 7sseldd 3938 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐵 ∈ ℂ)
1412, 13subcld 11493 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐴𝐵) ∈ ℂ)
15 simprr 772 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴𝐵)
1612, 13, 15subne0d 11502 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐴𝐵) ≠ 0)
179, 14, 16divcld 11918 . 2 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
181, 17sylan2b 594 1 ((𝜑𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  cdif 3902  wss 3905  {csn 4579  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cmin 11365   / cdiv 11795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796
This theorem is referenced by:  perfdvf  25820  dvreslem  25826  dvcnp  25836  dvcnp2  25837  dvcnp2OLD  25838  dvaddbr  25856  dvmulbr  25857  dvmulbrOLD  25858  dvcobr  25865  dvcobrOLD  25866  dvcjbr  25869  dvcnvlem  25896  dvferm1  25905  dvferm2  25907  ftc1lem6  25964  ulmdvlem3  26327  unbdqndv1  36484  ftc1cnnc  37674  fperdvper  45904
  Copyright terms: Public domain W3C validator