MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlem Structured version   Visualization version   GIF version

Theorem dvlem 24595
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvlem.1 (𝜑𝐹:𝐷⟶ℂ)
dvlem.2 (𝜑𝐷 ⊆ ℂ)
dvlem.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
dvlem ((𝜑𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)

Proof of Theorem dvlem
StepHypRef Expression
1 eldifsn 4677 . 2 (𝐴 ∈ (𝐷 ∖ {𝐵}) ↔ (𝐴𝐷𝐴𝐵))
2 dvlem.1 . . . . . 6 (𝜑𝐹:𝐷⟶ℂ)
32adantr 484 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐹:𝐷⟶ℂ)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴𝐷)
53, 4ffvelrnd 6843 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐹𝐴) ∈ ℂ)
6 dvlem.3 . . . . . 6 (𝜑𝐵𝐷)
76adantr 484 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐵𝐷)
83, 7ffvelrnd 6843 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐹𝐵) ∈ ℂ)
95, 8subcld 11035 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → ((𝐹𝐴) − (𝐹𝐵)) ∈ ℂ)
10 dvlem.2 . . . . . 6 (𝜑𝐷 ⊆ ℂ)
1110adantr 484 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐷 ⊆ ℂ)
1211, 4sseldd 3893 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴 ∈ ℂ)
1311, 7sseldd 3893 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐵 ∈ ℂ)
1412, 13subcld 11035 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐴𝐵) ∈ ℂ)
15 simprr 772 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴𝐵)
1612, 13, 15subne0d 11044 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐴𝐵) ≠ 0)
179, 14, 16divcld 11454 . 2 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
181, 17sylan2b 596 1 ((𝜑𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wne 2951  cdif 3855  wss 3858  {csn 4522  wf 6331  cfv 6335  (class class class)co 7150  cc 10573  cmin 10908   / cdiv 11335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336
This theorem is referenced by:  perfdvf  24602  dvreslem  24608  dvcnp  24618  dvcnp2  24619  dvaddbr  24637  dvmulbr  24638  dvcobr  24645  dvcjbr  24648  dvcnvlem  24675  dvferm1  24684  dvferm2  24686  ftc1lem6  24740  ulmdvlem3  25096  unbdqndv1  34237  ftc1cnnc  35409  fperdvper  42927
  Copyright terms: Public domain W3C validator