MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlem Structured version   Visualization version   GIF version

Theorem dvlem 24409
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvlem.1 (𝜑𝐹:𝐷⟶ℂ)
dvlem.2 (𝜑𝐷 ⊆ ℂ)
dvlem.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
dvlem ((𝜑𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)

Proof of Theorem dvlem
StepHypRef Expression
1 eldifsn 4718 . 2 (𝐴 ∈ (𝐷 ∖ {𝐵}) ↔ (𝐴𝐷𝐴𝐵))
2 dvlem.1 . . . . . 6 (𝜑𝐹:𝐷⟶ℂ)
32adantr 481 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐹:𝐷⟶ℂ)
4 simprl 767 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴𝐷)
53, 4ffvelrnd 6848 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐹𝐴) ∈ ℂ)
6 dvlem.3 . . . . . 6 (𝜑𝐵𝐷)
76adantr 481 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐵𝐷)
83, 7ffvelrnd 6848 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐹𝐵) ∈ ℂ)
95, 8subcld 10986 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → ((𝐹𝐴) − (𝐹𝐵)) ∈ ℂ)
10 dvlem.2 . . . . . 6 (𝜑𝐷 ⊆ ℂ)
1110adantr 481 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐷 ⊆ ℂ)
1211, 4sseldd 3972 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴 ∈ ℂ)
1311, 7sseldd 3972 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐵 ∈ ℂ)
1412, 13subcld 10986 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐴𝐵) ∈ ℂ)
15 simprr 769 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴𝐵)
1612, 13, 15subne0d 10995 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐴𝐵) ≠ 0)
179, 14, 16divcld 11405 . 2 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
181, 17sylan2b 593 1 ((𝜑𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2107  wne 3021  cdif 3937  wss 3940  {csn 4564  wf 6348  cfv 6352  (class class class)co 7148  cc 10524  cmin 10859   / cdiv 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287
This theorem is referenced by:  perfdvf  24416  dvreslem  24422  dvcnp  24431  dvcnp2  24432  dvaddbr  24450  dvmulbr  24451  dvcobr  24458  dvcjbr  24461  dvcnvlem  24488  dvferm1  24497  dvferm2  24499  ftc1lem6  24553  ulmdvlem3  24905  unbdqndv1  33731  ftc1cnnc  34833  fperdvper  42068
  Copyright terms: Public domain W3C validator