![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvlem | Structured version Visualization version GIF version |
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvlem.1 | β’ (π β πΉ:π·βΆβ) |
dvlem.2 | β’ (π β π· β β) |
dvlem.3 | β’ (π β π΅ β π·) |
Ref | Expression |
---|---|
dvlem | β’ ((π β§ π΄ β (π· β {π΅})) β (((πΉβπ΄) β (πΉβπ΅)) / (π΄ β π΅)) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4790 | . 2 β’ (π΄ β (π· β {π΅}) β (π΄ β π· β§ π΄ β π΅)) | |
2 | dvlem.1 | . . . . . 6 β’ (π β πΉ:π·βΆβ) | |
3 | 2 | adantr 481 | . . . . 5 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β πΉ:π·βΆβ) |
4 | simprl 769 | . . . . 5 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β π΄ β π·) | |
5 | 3, 4 | ffvelcdmd 7087 | . . . 4 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β (πΉβπ΄) β β) |
6 | dvlem.3 | . . . . . 6 β’ (π β π΅ β π·) | |
7 | 6 | adantr 481 | . . . . 5 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β π΅ β π·) |
8 | 3, 7 | ffvelcdmd 7087 | . . . 4 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β (πΉβπ΅) β β) |
9 | 5, 8 | subcld 11575 | . . 3 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β ((πΉβπ΄) β (πΉβπ΅)) β β) |
10 | dvlem.2 | . . . . . 6 β’ (π β π· β β) | |
11 | 10 | adantr 481 | . . . . 5 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β π· β β) |
12 | 11, 4 | sseldd 3983 | . . . 4 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β π΄ β β) |
13 | 11, 7 | sseldd 3983 | . . . 4 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β π΅ β β) |
14 | 12, 13 | subcld 11575 | . . 3 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β (π΄ β π΅) β β) |
15 | simprr 771 | . . . 4 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β π΄ β π΅) | |
16 | 12, 13, 15 | subne0d 11584 | . . 3 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β (π΄ β π΅) β 0) |
17 | 9, 14, 16 | divcld 11994 | . 2 β’ ((π β§ (π΄ β π· β§ π΄ β π΅)) β (((πΉβπ΄) β (πΉβπ΅)) / (π΄ β π΅)) β β) |
18 | 1, 17 | sylan2b 594 | 1 β’ ((π β§ π΄ β (π· β {π΅})) β (((πΉβπ΄) β (πΉβπ΅)) / (π΄ β π΅)) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 β wne 2940 β cdif 3945 β wss 3948 {csn 4628 βΆwf 6539 βcfv 6543 (class class class)co 7411 βcc 11110 β cmin 11448 / cdiv 11875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 |
This theorem is referenced by: perfdvf 25644 dvreslem 25650 dvcnp 25660 dvcnp2 25661 dvaddbr 25679 dvmulbr 25680 dvcobr 25687 dvcjbr 25690 dvcnvlem 25717 dvferm1 25726 dvferm2 25728 ftc1lem6 25782 ulmdvlem3 26138 gg-dvcnp2 35460 gg-dvmulbr 35461 gg-dvcobr 35462 unbdqndv1 35687 ftc1cnnc 36863 fperdvper 44934 |
Copyright terms: Public domain | W3C validator |