MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzssp1 Structured version   Visualization version   GIF version

Theorem fzssp1 13589
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzssp1 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))

Proof of Theorem fzssp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzel2 13544 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
2 uzid 12872 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
3 peano2uz 12922 . . . 4 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
4 fzss2 13586 . . . 4 ((𝑁 + 1) ∈ (ℤ𝑁) → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)))
51, 2, 3, 44syl 19 . . 3 (𝑘 ∈ (𝑀...𝑁) → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)))
6 id 22 . . 3 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (𝑀...𝑁))
75, 6sseldd 3964 . 2 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
87ssriv 3967 1 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3931  cfv 6536  (class class class)co 7410  1c1 11135   + caddc 11137  cz 12593  cuz 12857  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530
This theorem is referenced by:  fzelp1  13598  fseq1p1m1  13620  monoord2  14056  seqf1olem1  14064  seqf1olem2  14065  seqz  14073  binomlem  15850  binom1dif  15854  bpolycl  16073  bpolysum  16074  bpolydiflem  16075  bpoly4  16080  gsumsplit1r  18670  freshmansdream  21540  1stcfb  23388  axlowdimlem13  28938  axlowdimlem16  28941  gsumnunsn  34578  pthhashvtx  35155  cvmliftlem7  35318  poimirlem3  37652  poimirlem4  37653  volsupnfl  37694  sdclem2  37771  fdc  37774  mettrifi  37786  mapfzcons1cl  42708  2rexfrabdioph  42786  3rexfrabdioph  42787  4rexfrabdioph  42788  6rexfrabdioph  42789  7rexfrabdioph  42790  rabdiophlem2  42792  jm2.27dlem5  43004  monoord2xrv  45477  stoweidlem11  46007  stoweidlem34  46030  carageniuncllem1  46517
  Copyright terms: Public domain W3C validator