Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdwlk Structured version   Visualization version   GIF version

Theorem swrdwlk 35192
Description: Two matching subwords of a walk also represent a walk. (Contributed by BTernaryTau, 7-Dec-2023.)
Assertion
Ref Expression
swrdwlk ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 substr ⟨𝐵, 𝐿⟩)(Walks‘𝐺)(𝑃 substr ⟨𝐵, (𝐿 + 1)⟩))

Proof of Theorem swrdwlk
StepHypRef Expression
1 pfxwlk 35189 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))
213adant2 1131 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))
3 revwlk 35190 . . . . . 6 ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) → (reverse‘(𝐹 prefix 𝐿))(Walks‘𝐺)(reverse‘(𝑃 prefix (𝐿 + 1))))
42, 3syl 17 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (reverse‘(𝐹 prefix 𝐿))(Walks‘𝐺)(reverse‘(𝑃 prefix (𝐿 + 1))))
5 fznn0sub2 13537 . . . . . . 7 (𝐵 ∈ (0...𝐿) → (𝐿𝐵) ∈ (0...𝐿))
653ad2ant2 1134 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐿𝐵) ∈ (0...𝐿))
7 eqid 2733 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
87wlkf 29595 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
983ad2ant1 1133 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐹 ∈ Word dom (iEdg‘𝐺))
10 pfxcl 14587 . . . . . . . . 9 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
11 revlen 14671 . . . . . . . . 9 ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) → (♯‘(reverse‘(𝐹 prefix 𝐿))) = (♯‘(𝐹 prefix 𝐿)))
129, 10, 113syl 18 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(reverse‘(𝐹 prefix 𝐿))) = (♯‘(𝐹 prefix 𝐿)))
13 pfxlen 14593 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
148, 13sylan 580 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
15143adant2 1131 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
1612, 15eqtrd 2768 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(reverse‘(𝐹 prefix 𝐿))) = 𝐿)
1716oveq2d 7368 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘(reverse‘(𝐹 prefix 𝐿)))) = (0...𝐿))
186, 17eleqtrrd 2836 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐿𝐵) ∈ (0...(♯‘(reverse‘(𝐹 prefix 𝐿)))))
19 pfxwlk 35189 . . . . 5 (((reverse‘(𝐹 prefix 𝐿))(Walks‘𝐺)(reverse‘(𝑃 prefix (𝐿 + 1))) ∧ (𝐿𝐵) ∈ (0...(♯‘(reverse‘(𝐹 prefix 𝐿))))) → ((reverse‘(𝐹 prefix 𝐿)) prefix (𝐿𝐵))(Walks‘𝐺)((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿𝐵) + 1)))
204, 18, 19syl2anc 584 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((reverse‘(𝐹 prefix 𝐿)) prefix (𝐿𝐵))(Walks‘𝐺)((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿𝐵) + 1)))
21 elfzel2 13424 . . . . . . . 8 (𝐵 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
22213ad2ant2 1134 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐿 ∈ ℤ)
2322zcnd 12584 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐿 ∈ ℂ)
24 1cnd 11114 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 1 ∈ ℂ)
25 elfzelz 13426 . . . . . . . 8 (𝐵 ∈ (0...𝐿) → 𝐵 ∈ ℤ)
26253ad2ant2 1134 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐵 ∈ ℤ)
2726zcnd 12584 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐵 ∈ ℂ)
2823, 24, 27addsubd 11500 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝐿 + 1) − 𝐵) = ((𝐿𝐵) + 1))
2928oveq2d 7368 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿 + 1) − 𝐵)) = ((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿𝐵) + 1)))
3020, 29breqtrrd 5121 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((reverse‘(𝐹 prefix 𝐿)) prefix (𝐿𝐵))(Walks‘𝐺)((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿 + 1) − 𝐵)))
31 revwlk 35190 . . 3 (((reverse‘(𝐹 prefix 𝐿)) prefix (𝐿𝐵))(Walks‘𝐺)((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿 + 1) − 𝐵)) → (reverse‘((reverse‘(𝐹 prefix 𝐿)) prefix (𝐿𝐵)))(Walks‘𝐺)(reverse‘((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿 + 1) − 𝐵))))
3230, 31syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (reverse‘((reverse‘(𝐹 prefix 𝐿)) prefix (𝐿𝐵)))(Walks‘𝐺)(reverse‘((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿 + 1) − 𝐵))))
33 swrdrevpfx 35182 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 substr ⟨𝐵, 𝐿⟩) = (reverse‘((reverse‘(𝐹 prefix 𝐿)) prefix (𝐿𝐵))))
348, 33syl3an1 1163 . 2 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 substr ⟨𝐵, 𝐿⟩) = (reverse‘((reverse‘(𝐹 prefix 𝐿)) prefix (𝐿𝐵))))
35 eqid 2733 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3635wlkpwrd 29598 . . . 4 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
37363ad2ant1 1133 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝑃 ∈ Word (Vtx‘𝐺))
38 fzelp1 13478 . . . 4 (𝐵 ∈ (0...𝐿) → 𝐵 ∈ (0...(𝐿 + 1)))
39383ad2ant2 1134 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐵 ∈ (0...(𝐿 + 1)))
40 fzp1elp1 13479 . . . . 5 (𝐿 ∈ (0...(♯‘𝐹)) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
41403ad2ant3 1135 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
42 wlklenvp1 29599 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
43423ad2ant1 1133 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝑃) = ((♯‘𝐹) + 1))
4443oveq2d 7368 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
4541, 44eleqtrrd 2836 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...(♯‘𝑃)))
46 swrdrevpfx 35182 . . 3 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ (0...(𝐿 + 1)) ∧ (𝐿 + 1) ∈ (0...(♯‘𝑃))) → (𝑃 substr ⟨𝐵, (𝐿 + 1)⟩) = (reverse‘((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿 + 1) − 𝐵))))
4737, 39, 45, 46syl3anc 1373 . 2 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 substr ⟨𝐵, (𝐿 + 1)⟩) = (reverse‘((reverse‘(𝑃 prefix (𝐿 + 1))) prefix ((𝐿 + 1) − 𝐵))))
4832, 34, 473brtr4d 5125 1 ((𝐹(Walks‘𝐺)𝑃𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 substr ⟨𝐵, 𝐿⟩)(Walks‘𝐺)(𝑃 substr ⟨𝐵, (𝐿 + 1)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cop 4581   class class class wbr 5093  dom cdm 5619  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  cmin 11351  cz 12475  ...cfz 13409  chash 14239  Word cword 14422   substr csubstr 14550   prefix cpfx 14580  reversecreverse 14667  Vtxcvtx 28976  iEdgciedg 28977  Walkscwlks 29577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-substr 14551  df-pfx 14581  df-reverse 14668  df-wlks 29580
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator