MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznn0sub2 Structured version   Visualization version   GIF version

Theorem fznn0sub2 13549
Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fznn0sub2 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))

Proof of Theorem fznn0sub2
StepHypRef Expression
1 elfzle1 13445 . . 3 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
2 elfzel2 13440 . . . 4 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 13442 . . . 4 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
4 zre 12504 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 zre 12504 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
6 subge02 11672 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
74, 5, 6syl2an 597 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
82, 3, 7syl2anc 585 . . 3 (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
91, 8mpbid 231 . 2 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ≤ 𝑁)
10 fznn0sub 13474 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
11 nn0uz 12806 . . . 4 0 = (ℤ‘0)
1210, 11eleqtrdi 2848 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (ℤ‘0))
13 elfz5 13434 . . 3 (((𝑁𝐾) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) ∈ (0...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
1412, 2, 13syl2anc 585 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁𝐾) ∈ (0...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
159, 14mpbird 257 1 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107   class class class wbr 5106  cfv 6497  (class class class)co 7358  cr 11051  0cc0 11052  cle 11191  cmin 11386  0cn0 12414  cz 12500  cuz 12764  ...cfz 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501  df-uz 12765  df-fz 13426
This theorem is referenced by:  uzsubfz0  13550  bccmpl  14210  pfxlswccat  14602  revcl  14650  revlen  14651  revccat  14655  revrev  14656  2cshwcshw  14715  cshwcshid  14717  revco  14724  fsum0diag2  15669  mertenslem1  15770  cshwshashlem2  16970  taylthlem2  25736  birthdaylem2  26305  basellem3  26435  eleclclwwlknlem2  29008  signstfveq0  33192  revpfxsfxrev  33712  swrdrevpfx  33713  swrdwlk  33723  dvnprodlem2  44195  ply1mulgsumlem2  46475
  Copyright terms: Public domain W3C validator