MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznn0sub2 Structured version   Visualization version   GIF version

Theorem fznn0sub2 12698
Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fznn0sub2 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))

Proof of Theorem fznn0sub2
StepHypRef Expression
1 elfzle1 12595 . . 3 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
2 elfzel2 12591 . . . 4 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 12593 . . . 4 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
4 zre 11667 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 zre 11667 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
6 subge02 10835 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
74, 5, 6syl2an 590 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
82, 3, 7syl2anc 580 . . 3 (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
91, 8mpbid 224 . 2 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ≤ 𝑁)
10 fznn0sub 12624 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
11 nn0uz 11963 . . . 4 0 = (ℤ‘0)
1210, 11syl6eleq 2887 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (ℤ‘0))
13 elfz5 12585 . . 3 (((𝑁𝐾) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) ∈ (0...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
1412, 2, 13syl2anc 580 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁𝐾) ∈ (0...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
159, 14mpbird 249 1 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2157   class class class wbr 4842  cfv 6100  (class class class)co 6877  cr 10222  0cc0 10223  cle 10363  cmin 10555  0cn0 11577  cz 11663  cuz 11927  ...cfz 12577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-er 7981  df-en 8195  df-dom 8196  df-sdom 8197  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-nn 11312  df-n0 11578  df-z 11664  df-uz 11928  df-fz 12578
This theorem is referenced by:  uzsubfz0  12699  bccmpl  13346  pfxlswccat  13760  revcl  13838  revlen  13839  revccat  13843  revrev  13844  2cshwcshw  13907  cshwcshid  13909  revco  13916  fsum0diag2  14850  mertenslem1  14950  cshwshashlem2  16128  taylthlem2  24466  birthdaylem2  25028  basellem3  25158  eleclclwwlknlem2  27372  signstfveq0  31166  signstfveq0OLD  31167  dvnprodlem2  40895  ply1mulgsumlem2  42963
  Copyright terms: Public domain W3C validator