Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzelfzlble Structured version   Visualization version   GIF version

Theorem elfzelfzlble 47350
Description: Membership of an element of a finite set of sequential integers in a finite set of sequential integers with the same upper bound and a lower bound less than the upper bound. (Contributed by AV, 21-Oct-2018.)
Assertion
Ref Expression
elfzelfzlble ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → 𝐾 ∈ ((𝑁𝑀)...𝑁))

Proof of Theorem elfzelfzlble
StepHypRef Expression
1 elfz2 13531 . . . . . . 7 (𝐾 ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (0 ≤ 𝐾𝐾𝑁)))
2 3simpc 1150 . . . . . . . 8 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
32adantr 480 . . . . . . 7 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (0 ≤ 𝐾𝐾𝑁)) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
41, 3sylbi 217 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
54anim2i 617 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁)) → (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)))
6 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
76anim2i 617 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
87ancomd 461 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
9 zsubcl 12634 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
108, 9syl 17 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑁𝑀) ∈ ℤ)
116adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑁 ∈ ℤ)
12 simprr 772 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ)
1310, 11, 123jca 1128 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑁𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
145, 13syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
15143adant3 1132 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → ((𝑁𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
16 elfzel2 13539 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1716zred 12697 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
1817adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
19 zre 12592 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2019adantr 480 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
21 elfzelz 13541 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
2221zred 12697 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
2322adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
2418, 20, 233jca 1128 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ))
25 simp1 1136 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → 𝑁 ∈ ℝ)
26 readdcl 11212 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 + 𝐾) ∈ ℝ)
27263adant1 1130 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 + 𝐾) ∈ ℝ)
28 ltle 11323 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝑀 + 𝐾) ∈ ℝ) → (𝑁 < (𝑀 + 𝐾) → 𝑁 ≤ (𝑀 + 𝐾)))
2925, 27, 28syl2anc 584 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑁 < (𝑀 + 𝐾) → 𝑁 ≤ (𝑀 + 𝐾)))
30 lesubadd2 11710 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑁𝑀) ≤ 𝐾𝑁 ≤ (𝑀 + 𝐾)))
3129, 30sylibrd 259 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑁 < (𝑀 + 𝐾) → (𝑁𝑀) ≤ 𝐾))
3224, 31syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 < (𝑀 + 𝐾) → (𝑁𝑀) ≤ 𝐾))
33323impia 1117 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → (𝑁𝑀) ≤ 𝐾)
34 elfzle2 13545 . . . 4 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
35343ad2ant2 1134 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → 𝐾𝑁)
3615, 33, 35jca32 515 . 2 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → (((𝑁𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑁𝑀) ≤ 𝐾𝐾𝑁)))
37 elfz2 13531 . 2 (𝐾 ∈ ((𝑁𝑀)...𝑁) ↔ (((𝑁𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑁𝑀) ≤ 𝐾𝐾𝑁)))
3836, 37sylibr 234 1 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → 𝐾 ∈ ((𝑁𝑀)...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2108   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129   + caddc 11132   < clt 11269  cle 11270  cmin 11466  cz 12588  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator