MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelfznle Structured version   Visualization version   GIF version

Theorem difelfznle 12840
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfznle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))

Proof of Theorem difelfznle
StepHypRef Expression
1 elfz2nn0 12817 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 nn0addcl 11747 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
32nn0zd 11901 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
433adant3 1112 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℤ)
51, 4sylbi 209 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℤ)
6 elfzelz 12727 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
7 zsubcl 11840 . . . . 5 (((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
85, 6, 7syl2anr 587 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
983adant3 1112 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
106zred 11903 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
1110adantr 473 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
12 elfzel2 12725 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1312zred 11903 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
1413adantr 473 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
15 nn0readdcl 11776 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
16153adant3 1112 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℝ)
171, 16sylbi 209 . . . . . . 7 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
1817adantl 474 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
19 elfzle2 12730 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
20 elfzle1 12729 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀)
21 nn0re 11720 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
22 nn0re 11720 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2321, 22anim12ci 604 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233adant3 1112 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
251, 24sylbi 209 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
26 addge02 10954 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2725, 26syl 17 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2820, 27mpbid 224 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑁 ≤ (𝑀 + 𝑁))
2919, 28anim12i 603 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)))
30 letr 10536 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)) → 𝐾 ≤ (𝑀 + 𝑁)))
3130imp 398 . . . . . 6 (((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) ∧ (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁))) → 𝐾 ≤ (𝑀 + 𝑁))
3211, 14, 18, 29, 31syl31anc 1353 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ≤ (𝑀 + 𝑁))
33323adant3 1112 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝐾 ≤ (𝑀 + 𝑁))
34 zre 11800 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3521, 22anim12i 603 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36353adant3 1112 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
371, 36sylbi 209 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
38 readdcl 10420 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 + 𝑁) ∈ ℝ)
3937, 38syl 17 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
4034, 39anim12ci 604 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
416, 40sylan 572 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
42413adant3 1112 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
43 subge0 10956 . . . . 5 (((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4442, 43syl 17 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4533, 44mpbird 249 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 0 ≤ ((𝑀 + 𝑁) − 𝐾))
46 elnn0z 11809 . . 3 (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℤ ∧ 0 ≤ ((𝑀 + 𝑁) − 𝐾)))
479, 45, 46sylanbrc 575 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℕ0)
48 elfz3nn0 12820 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
49483ad2ant1 1113 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑁 ∈ ℕ0)
50 elfzelz 12727 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
51 zre 11800 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
52 ltnle 10522 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
5352ancoms 451 . . . . . . . 8 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
54 ltle 10531 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾𝑀𝐾))
5554ancoms 451 . . . . . . . 8 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑀 < 𝐾𝑀𝐾))
5653, 55sylbird 252 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (¬ 𝐾𝑀𝑀𝐾))
5734, 51, 56syl2an 586 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (¬ 𝐾𝑀𝑀𝐾))
586, 50, 57syl2an 586 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (¬ 𝐾𝑀𝑀𝐾))
59583impia 1097 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑀𝐾)
6050zred 11903 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℝ)
6160adantl 474 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
6261, 11, 14leadd1d 11037 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
63623adant3 1112 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6459, 63mpbid 224 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))
6518, 11, 14lesubadd2d 11042 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
66653adant3 1112 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6764, 66mpbird 249 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁)
68 elfz2nn0 12817 . 2 (((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁) ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁))
6947, 49, 67, 68syl3anbrc 1323 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068  wcel 2050   class class class wbr 4930  (class class class)co 6978  cr 10336  0cc0 10337   + caddc 10340   < clt 10476  cle 10477  cmin 10672  0cn0 11710  cz 11796  ...cfz 12711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712
This theorem is referenced by:  2cshwcshw  14052
  Copyright terms: Public domain W3C validator