MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzofzp1b Structured version   Visualization version   GIF version

Theorem fzofzp1b 13496
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
fzofzp1b (𝐶 ∈ (ℤ𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵)))

Proof of Theorem fzofzp1b
StepHypRef Expression
1 fzofzp1 13495 . 2 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵))
2 simpl 483 . . . . 5 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (ℤ𝐴))
3 eluzelz 12603 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ ℤ)
4 elfzuz3 13264 . . . . . 6 ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐵 ∈ (ℤ‘(𝐶 + 1)))
5 eluzp1m1 12619 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐶 + 1))) → (𝐵 − 1) ∈ (ℤ𝐶))
63, 4, 5syl2an 596 . . . . 5 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → (𝐵 − 1) ∈ (ℤ𝐶))
7 elfzuzb 13261 . . . . 5 (𝐶 ∈ (𝐴...(𝐵 − 1)) ↔ (𝐶 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐶)))
82, 6, 7sylanbrc 583 . . . 4 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (𝐴...(𝐵 − 1)))
9 elfzel2 13265 . . . . . 6 ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐵 ∈ ℤ)
109adantl 482 . . . . 5 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐵 ∈ ℤ)
11 fzoval 13399 . . . . 5 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1210, 11syl 17 . . . 4 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
138, 12eleqtrrd 2844 . . 3 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (𝐴..^𝐵))
1413ex 413 . 2 (𝐶 ∈ (ℤ𝐴) → ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐶 ∈ (𝐴..^𝐵)))
151, 14impbid2 225 1 (𝐶 ∈ (ℤ𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  cfv 6432  (class class class)co 7272  1c1 10883   + caddc 10885  cmin 11216  cz 12330  cuz 12593  ...cfz 13250  ..^cfzo 13393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-n0 12245  df-z 12331  df-uz 12594  df-fz 13251  df-fzo 13394
This theorem is referenced by:  iccpartres  44849
  Copyright terms: Public domain W3C validator