MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzofzp1b Structured version   Visualization version   GIF version

Theorem fzofzp1b 12817
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
fzofzp1b (𝐶 ∈ (ℤ𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵)))

Proof of Theorem fzofzp1b
StepHypRef Expression
1 fzofzp1 12816 . 2 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵))
2 simpl 475 . . . . 5 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (ℤ𝐴))
3 eluzelz 11936 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ ℤ)
4 elfzuz3 12589 . . . . . 6 ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐵 ∈ (ℤ‘(𝐶 + 1)))
5 eluzp1m1 11950 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐶 + 1))) → (𝐵 − 1) ∈ (ℤ𝐶))
63, 4, 5syl2an 590 . . . . 5 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → (𝐵 − 1) ∈ (ℤ𝐶))
7 elfzuzb 12586 . . . . 5 (𝐶 ∈ (𝐴...(𝐵 − 1)) ↔ (𝐶 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐶)))
82, 6, 7sylanbrc 579 . . . 4 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (𝐴...(𝐵 − 1)))
9 elfzel2 12590 . . . . . 6 ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐵 ∈ ℤ)
109adantl 474 . . . . 5 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐵 ∈ ℤ)
11 fzoval 12722 . . . . 5 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1210, 11syl 17 . . . 4 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
138, 12eleqtrrd 2879 . . 3 ((𝐶 ∈ (ℤ𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (𝐴..^𝐵))
1413ex 402 . 2 (𝐶 ∈ (ℤ𝐴) → ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐶 ∈ (𝐴..^𝐵)))
151, 14impbid2 218 1 (𝐶 ∈ (ℤ𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  cfv 6099  (class class class)co 6876  1c1 10223   + caddc 10225  cmin 10554  cz 11662  cuz 11926  ...cfz 12576  ..^cfzo 12716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717
This theorem is referenced by:  iccpartres  42181
  Copyright terms: Public domain W3C validator