Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2elfz2melfz Structured version   Visualization version   GIF version

Theorem 2elfz2melfz 43512
Description: If the sum of two integers of a 0-based finite set of sequential integers is greater than the upper bound, the difference between one of the integers and the difference between the upper bound and the other integer is in the 0-based finite set of sequential integers with the first integer as upper bound. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by Alexander van der Vekens, 31-May-2018.)
Assertion
Ref Expression
2elfz2melfz ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))

Proof of Theorem 2elfz2melfz
StepHypRef Expression
1 elfzelz 12902 . . . . 5 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℤ)
2 elfzel2 12900 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 12902 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℤ)
4 simplr 767 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℤ)
5 zsubcl 12018 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
65adantlr 713 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
74, 6zsubcld 12086 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
87adantr 483 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
9 zre 11979 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109ad2antrr 724 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℝ)
11 zaddcl 12016 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1211zred 12081 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1312expcom 416 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1413adantl 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1514imp 409 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1610, 15, 10ltsub1d 11243 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) ↔ (𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁)))
17 zre 11979 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
189, 17anim12i 614 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ))
19 zre 11979 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2018, 19anim12i 614 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ))
21 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
2221, 21resubcld 11062 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (𝑁𝑁) ∈ ℝ)
2322ad2antrr 724 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝑁𝑁) ∈ ℝ)
24 readdcl 10614 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
2524expcom 416 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2625adantl 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2726imp 409 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
28 simpll 765 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℝ)
2927, 28resubcld 11062 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) − 𝑁) ∈ ℝ)
3023, 29jca 514 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ))
31 ltle 10723 . . . . . . . . . . . 12 (((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
3220, 30, 313syl 18 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
33 zcn 11980 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433subidd 10979 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁𝑁) = 0)
3534ad2antrr 724 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝑁) = 0)
36 zcn 11980 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3736adantl 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3837adantr 483 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℂ)
3933ad2antrr 724 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℂ)
40 zcn 11980 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4140adantl 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
42 simp3 1134 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
43 simp1 1132 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
4442, 43addcomd 10836 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4544oveq1d 7165 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = ((𝐵 + 𝐴) − 𝑁))
46 subsub3 10912 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − (𝑁𝐴)) = ((𝐵 + 𝐴) − 𝑁))
4745, 46eqtr4d 2859 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4838, 39, 41, 47syl3anc 1367 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4935, 48breq12d 5071 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁) ↔ 0 ≤ (𝐵 − (𝑁𝐴))))
5032, 49sylibd 241 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → 0 ≤ (𝐵 − (𝑁𝐴))))
5116, 50sylbid 242 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) → 0 ≤ (𝐵 − (𝑁𝐴))))
5251imp 409 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 − (𝑁𝐴)))
53 elnn0z 11988 . . . . . . . 8 ((𝐵 − (𝑁𝐴)) ∈ ℕ0 ↔ ((𝐵 − (𝑁𝐴)) ∈ ℤ ∧ 0 ≤ (𝐵 − (𝑁𝐴))))
548, 52, 53sylanbrc 585 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
5554exp31 422 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
562, 3, 55syl2anc 586 . . . . 5 (𝐵 ∈ (0...𝑁) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
571, 56mpan9 509 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0))
5857imp 409 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
59 elfznn0 12994 . . . 4 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℕ0)
6059ad2antrr 724 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → 𝐴 ∈ ℕ0)
61 elfzle2 12905 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵𝑁)
6261adantl 484 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵𝑁)
63 elfzel2 12900 . . . . . . . . . 10 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
6463zcnd 12082 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
651zcnd 12082 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℂ)
6664, 65jca 514 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
6766adantr 483 . . . . . . 7 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
68 npcan 10889 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑁𝐴) + 𝐴) = 𝑁)
6967, 68syl 17 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝑁𝐴) + 𝐴) = 𝑁)
7062, 69breqtrrd 5086 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ≤ ((𝑁𝐴) + 𝐴))
713zred 12081 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℝ)
7271adantl 484 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ∈ ℝ)
7363zred 12081 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
741zred 12081 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℝ)
7573, 74resubcld 11062 . . . . . . 7 (𝐴 ∈ (0...𝑁) → (𝑁𝐴) ∈ ℝ)
7675adantr 483 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁𝐴) ∈ ℝ)
7774adantr 483 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐴 ∈ ℝ)
7872, 76, 77lesubadd2d 11233 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝐵 − (𝑁𝐴)) ≤ 𝐴𝐵 ≤ ((𝑁𝐴) + 𝐴)))
7970, 78mpbird 259 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
8079adantr 483 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
81 elfz2nn0 12992 . . 3 ((𝐵 − (𝑁𝐴)) ∈ (0...𝐴) ↔ ((𝐵 − (𝑁𝐴)) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 − (𝑁𝐴)) ≤ 𝐴))
8258, 60, 80, 81syl3anbrc 1339 . 2 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴))
8382ex 415 1 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5058  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   + caddc 10534   < clt 10669  cle 10670  cmin 10864  0cn0 11891  cz 11975  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator