Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2elfz2melfz Structured version   Visualization version   GIF version

Theorem 2elfz2melfz 47349
Description: If the sum of two integers of a 0-based finite set of sequential integers is greater than the upper bound, the difference between one of the integers and the difference between the upper bound and the other integer is in the 0-based finite set of sequential integers with the first integer as upper bound. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by Alexander van der Vekens, 31-May-2018.)
Assertion
Ref Expression
2elfz2melfz ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))

Proof of Theorem 2elfz2melfz
StepHypRef Expression
1 elfzelz 13419 . . . . 5 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℤ)
2 elfzel2 13417 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 13419 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℤ)
4 simplr 768 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℤ)
5 zsubcl 12509 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
65adantlr 715 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
74, 6zsubcld 12577 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
87adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
9 zre 12467 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109ad2antrr 726 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℝ)
11 zaddcl 12507 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1211zred 12572 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1312expcom 413 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1413adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1514imp 406 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1610, 15, 10ltsub1d 11721 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) ↔ (𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁)))
17 zre 12467 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
189, 17anim12i 613 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ))
19 zre 12467 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2018, 19anim12i 613 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ))
21 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
2221, 21resubcld 11540 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (𝑁𝑁) ∈ ℝ)
2322ad2antrr 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝑁𝑁) ∈ ℝ)
24 readdcl 11084 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
2524expcom 413 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2625adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2726imp 406 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
28 simpll 766 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℝ)
2927, 28resubcld 11540 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) − 𝑁) ∈ ℝ)
3023, 29jca 511 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ))
31 ltle 11196 . . . . . . . . . . . 12 (((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
3220, 30, 313syl 18 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
33 zcn 12468 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433subidd 11455 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁𝑁) = 0)
3534ad2antrr 726 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝑁) = 0)
36 zcn 12468 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3736adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3837adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℂ)
3933ad2antrr 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℂ)
40 zcn 12468 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4140adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
42 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
43 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
4442, 43addcomd 11310 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4544oveq1d 7356 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = ((𝐵 + 𝐴) − 𝑁))
46 subsub3 11388 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − (𝑁𝐴)) = ((𝐵 + 𝐴) − 𝑁))
4745, 46eqtr4d 2769 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4838, 39, 41, 47syl3anc 1373 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4935, 48breq12d 5099 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁) ↔ 0 ≤ (𝐵 − (𝑁𝐴))))
5032, 49sylibd 239 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → 0 ≤ (𝐵 − (𝑁𝐴))))
5116, 50sylbid 240 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) → 0 ≤ (𝐵 − (𝑁𝐴))))
5251imp 406 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 − (𝑁𝐴)))
53 elnn0z 12476 . . . . . . . 8 ((𝐵 − (𝑁𝐴)) ∈ ℕ0 ↔ ((𝐵 − (𝑁𝐴)) ∈ ℤ ∧ 0 ≤ (𝐵 − (𝑁𝐴))))
548, 52, 53sylanbrc 583 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
5554exp31 419 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
562, 3, 55syl2anc 584 . . . . 5 (𝐵 ∈ (0...𝑁) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
571, 56mpan9 506 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0))
5857imp 406 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
59 elfznn0 13515 . . . 4 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℕ0)
6059ad2antrr 726 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → 𝐴 ∈ ℕ0)
61 elfzle2 13423 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵𝑁)
6261adantl 481 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵𝑁)
63 elfzel2 13417 . . . . . . . . . 10 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
6463zcnd 12573 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
651zcnd 12573 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℂ)
6664, 65jca 511 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
6766adantr 480 . . . . . . 7 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
68 npcan 11364 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑁𝐴) + 𝐴) = 𝑁)
6967, 68syl 17 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝑁𝐴) + 𝐴) = 𝑁)
7062, 69breqtrrd 5114 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ≤ ((𝑁𝐴) + 𝐴))
713zred 12572 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℝ)
7271adantl 481 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ∈ ℝ)
7363zred 12572 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
741zred 12572 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℝ)
7573, 74resubcld 11540 . . . . . . 7 (𝐴 ∈ (0...𝑁) → (𝑁𝐴) ∈ ℝ)
7675adantr 480 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁𝐴) ∈ ℝ)
7774adantr 480 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐴 ∈ ℝ)
7872, 76, 77lesubadd2d 11711 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝐵 − (𝑁𝐴)) ≤ 𝐴𝐵 ≤ ((𝑁𝐴) + 𝐴)))
7970, 78mpbird 257 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
8079adantr 480 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
81 elfz2nn0 13513 . . 3 ((𝐵 − (𝑁𝐴)) ∈ (0...𝐴) ↔ ((𝐵 − (𝑁𝐴)) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 − (𝑁𝐴)) ≤ 𝐴))
8258, 60, 80, 81syl3anbrc 1344 . 2 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴))
8382ex 412 1 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001   + caddc 11004   < clt 11141  cle 11142  cmin 11339  0cn0 12376  cz 12463  ...cfz 13402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator