Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2elfz2melfz Structured version   Visualization version   GIF version

Theorem 2elfz2melfz 44810
Description: If the sum of two integers of a 0-based finite set of sequential integers is greater than the upper bound, the difference between one of the integers and the difference between the upper bound and the other integer is in the 0-based finite set of sequential integers with the first integer as upper bound. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by Alexander van der Vekens, 31-May-2018.)
Assertion
Ref Expression
2elfz2melfz ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))

Proof of Theorem 2elfz2melfz
StepHypRef Expression
1 elfzelz 13256 . . . . 5 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℤ)
2 elfzel2 13254 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 13256 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℤ)
4 simplr 766 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℤ)
5 zsubcl 12362 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
65adantlr 712 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
74, 6zsubcld 12431 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
87adantr 481 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
9 zre 12323 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109ad2antrr 723 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℝ)
11 zaddcl 12360 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1211zred 12426 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1312expcom 414 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1413adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1514imp 407 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1610, 15, 10ltsub1d 11584 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) ↔ (𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁)))
17 zre 12323 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
189, 17anim12i 613 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ))
19 zre 12323 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2018, 19anim12i 613 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ))
21 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
2221, 21resubcld 11403 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (𝑁𝑁) ∈ ℝ)
2322ad2antrr 723 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝑁𝑁) ∈ ℝ)
24 readdcl 10954 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
2524expcom 414 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2625adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2726imp 407 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
28 simpll 764 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℝ)
2927, 28resubcld 11403 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) − 𝑁) ∈ ℝ)
3023, 29jca 512 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ))
31 ltle 11063 . . . . . . . . . . . 12 (((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
3220, 30, 313syl 18 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
33 zcn 12324 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433subidd 11320 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁𝑁) = 0)
3534ad2antrr 723 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝑁) = 0)
36 zcn 12324 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3736adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3837adantr 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℂ)
3933ad2antrr 723 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℂ)
40 zcn 12324 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4140adantl 482 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
42 simp3 1137 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
43 simp1 1135 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
4442, 43addcomd 11177 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4544oveq1d 7290 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = ((𝐵 + 𝐴) − 𝑁))
46 subsub3 11253 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − (𝑁𝐴)) = ((𝐵 + 𝐴) − 𝑁))
4745, 46eqtr4d 2781 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4838, 39, 41, 47syl3anc 1370 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4935, 48breq12d 5087 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁) ↔ 0 ≤ (𝐵 − (𝑁𝐴))))
5032, 49sylibd 238 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → 0 ≤ (𝐵 − (𝑁𝐴))))
5116, 50sylbid 239 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) → 0 ≤ (𝐵 − (𝑁𝐴))))
5251imp 407 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 − (𝑁𝐴)))
53 elnn0z 12332 . . . . . . . 8 ((𝐵 − (𝑁𝐴)) ∈ ℕ0 ↔ ((𝐵 − (𝑁𝐴)) ∈ ℤ ∧ 0 ≤ (𝐵 − (𝑁𝐴))))
548, 52, 53sylanbrc 583 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
5554exp31 420 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
562, 3, 55syl2anc 584 . . . . 5 (𝐵 ∈ (0...𝑁) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
571, 56mpan9 507 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0))
5857imp 407 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
59 elfznn0 13349 . . . 4 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℕ0)
6059ad2antrr 723 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → 𝐴 ∈ ℕ0)
61 elfzle2 13260 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵𝑁)
6261adantl 482 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵𝑁)
63 elfzel2 13254 . . . . . . . . . 10 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
6463zcnd 12427 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
651zcnd 12427 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℂ)
6664, 65jca 512 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
6766adantr 481 . . . . . . 7 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
68 npcan 11230 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑁𝐴) + 𝐴) = 𝑁)
6967, 68syl 17 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝑁𝐴) + 𝐴) = 𝑁)
7062, 69breqtrrd 5102 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ≤ ((𝑁𝐴) + 𝐴))
713zred 12426 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℝ)
7271adantl 482 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ∈ ℝ)
7363zred 12426 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
741zred 12426 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℝ)
7573, 74resubcld 11403 . . . . . . 7 (𝐴 ∈ (0...𝑁) → (𝑁𝐴) ∈ ℝ)
7675adantr 481 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁𝐴) ∈ ℝ)
7774adantr 481 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐴 ∈ ℝ)
7872, 76, 77lesubadd2d 11574 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝐵 − (𝑁𝐴)) ≤ 𝐴𝐵 ≤ ((𝑁𝐴) + 𝐴)))
7970, 78mpbird 256 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
8079adantr 481 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
81 elfz2nn0 13347 . . 3 ((𝐵 − (𝑁𝐴)) ∈ (0...𝐴) ↔ ((𝐵 − (𝑁𝐴)) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 − (𝑁𝐴)) ≤ 𝐴))
8258, 60, 80, 81syl3anbrc 1342 . 2 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴))
8382ex 413 1 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   < clt 11009  cle 11010  cmin 11205  0cn0 12233  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator