Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2elfz2melfz Structured version   Visualization version   GIF version

Theorem 2elfz2melfz 46026
Description: If the sum of two integers of a 0-based finite set of sequential integers is greater than the upper bound, the difference between one of the integers and the difference between the upper bound and the other integer is in the 0-based finite set of sequential integers with the first integer as upper bound. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by Alexander van der Vekens, 31-May-2018.)
Assertion
Ref Expression
2elfz2melfz ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))

Proof of Theorem 2elfz2melfz
StepHypRef Expression
1 elfzelz 13501 . . . . 5 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℤ)
2 elfzel2 13499 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 13501 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℤ)
4 simplr 768 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℤ)
5 zsubcl 12604 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
65adantlr 714 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
74, 6zsubcld 12671 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
87adantr 482 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
9 zre 12562 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109ad2antrr 725 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℝ)
11 zaddcl 12602 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1211zred 12666 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1312expcom 415 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1413adantl 483 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1514imp 408 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1610, 15, 10ltsub1d 11823 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) ↔ (𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁)))
17 zre 12562 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
189, 17anim12i 614 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ))
19 zre 12562 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2018, 19anim12i 614 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ))
21 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
2221, 21resubcld 11642 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (𝑁𝑁) ∈ ℝ)
2322ad2antrr 725 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝑁𝑁) ∈ ℝ)
24 readdcl 11193 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
2524expcom 415 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2625adantl 483 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2726imp 408 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
28 simpll 766 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℝ)
2927, 28resubcld 11642 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) − 𝑁) ∈ ℝ)
3023, 29jca 513 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ))
31 ltle 11302 . . . . . . . . . . . 12 (((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
3220, 30, 313syl 18 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
33 zcn 12563 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433subidd 11559 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁𝑁) = 0)
3534ad2antrr 725 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝑁) = 0)
36 zcn 12563 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3736adantl 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3837adantr 482 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℂ)
3933ad2antrr 725 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℂ)
40 zcn 12563 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4140adantl 483 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
42 simp3 1139 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
43 simp1 1137 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
4442, 43addcomd 11416 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4544oveq1d 7424 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = ((𝐵 + 𝐴) − 𝑁))
46 subsub3 11492 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − (𝑁𝐴)) = ((𝐵 + 𝐴) − 𝑁))
4745, 46eqtr4d 2776 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4838, 39, 41, 47syl3anc 1372 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4935, 48breq12d 5162 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁) ↔ 0 ≤ (𝐵 − (𝑁𝐴))))
5032, 49sylibd 238 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → 0 ≤ (𝐵 − (𝑁𝐴))))
5116, 50sylbid 239 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) → 0 ≤ (𝐵 − (𝑁𝐴))))
5251imp 408 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 − (𝑁𝐴)))
53 elnn0z 12571 . . . . . . . 8 ((𝐵 − (𝑁𝐴)) ∈ ℕ0 ↔ ((𝐵 − (𝑁𝐴)) ∈ ℤ ∧ 0 ≤ (𝐵 − (𝑁𝐴))))
548, 52, 53sylanbrc 584 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
5554exp31 421 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
562, 3, 55syl2anc 585 . . . . 5 (𝐵 ∈ (0...𝑁) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
571, 56mpan9 508 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0))
5857imp 408 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
59 elfznn0 13594 . . . 4 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℕ0)
6059ad2antrr 725 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → 𝐴 ∈ ℕ0)
61 elfzle2 13505 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵𝑁)
6261adantl 483 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵𝑁)
63 elfzel2 13499 . . . . . . . . . 10 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
6463zcnd 12667 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
651zcnd 12667 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℂ)
6664, 65jca 513 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
6766adantr 482 . . . . . . 7 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
68 npcan 11469 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑁𝐴) + 𝐴) = 𝑁)
6967, 68syl 17 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝑁𝐴) + 𝐴) = 𝑁)
7062, 69breqtrrd 5177 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ≤ ((𝑁𝐴) + 𝐴))
713zred 12666 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℝ)
7271adantl 483 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ∈ ℝ)
7363zred 12666 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
741zred 12666 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℝ)
7573, 74resubcld 11642 . . . . . . 7 (𝐴 ∈ (0...𝑁) → (𝑁𝐴) ∈ ℝ)
7675adantr 482 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁𝐴) ∈ ℝ)
7774adantr 482 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐴 ∈ ℝ)
7872, 76, 77lesubadd2d 11813 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝐵 − (𝑁𝐴)) ≤ 𝐴𝐵 ≤ ((𝑁𝐴) + 𝐴)))
7970, 78mpbird 257 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
8079adantr 482 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
81 elfz2nn0 13592 . . 3 ((𝐵 − (𝑁𝐴)) ∈ (0...𝐴) ↔ ((𝐵 − (𝑁𝐴)) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 − (𝑁𝐴)) ≤ 𝐴))
8258, 60, 80, 81syl3anbrc 1344 . 2 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴))
8382ex 414 1 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110   + caddc 11113   < clt 11248  cle 11249  cmin 11444  0cn0 12472  cz 12558  ...cfz 13484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator