MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpqb Structured version   Visualization version   GIF version

Theorem elpqb 12871
Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.)
Assertion
Ref Expression
elpqb ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elpqb
StepHypRef Expression
1 elpq 12870 . 2 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 nnz 12486 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
3 znq 12847 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ)
42, 3sylan 580 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ)
5 nnre 12129 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6 nngt0 12153 . . . . . . 7 (𝑥 ∈ ℕ → 0 < 𝑥)
75, 6jca 511 . . . . . 6 (𝑥 ∈ ℕ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
8 nnre 12129 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
9 nngt0 12153 . . . . . . 7 (𝑦 ∈ ℕ → 0 < 𝑦)
108, 9jca 511 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 0 < 𝑦))
11 divgt0 11987 . . . . . 6 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 < (𝑥 / 𝑦))
127, 10, 11syl2an 596 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 < (𝑥 / 𝑦))
134, 12jca 511 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦)))
14 eleq1 2819 . . . . 5 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ))
15 breq2 5095 . . . . 5 (𝐴 = (𝑥 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑥 / 𝑦)))
1614, 15anbi12d 632 . . . 4 (𝐴 = (𝑥 / 𝑦) → ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦))))
1713, 16syl5ibrcom 247 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴)))
1817rexlimivv 3174 . 2 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴))
191, 18impbii 209 1 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  (class class class)co 7346  cr 11002  0cc0 11003   < clt 11143   / cdiv 11771  cn 12122  cz 12465  cq 12843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-z 12466  df-q 12844
This theorem is referenced by:  nrt2irr  30448
  Copyright terms: Public domain W3C validator