MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpqb Structured version   Visualization version   GIF version

Theorem elpqb 12098
Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.)
Assertion
Ref Expression
elpqb ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elpqb
StepHypRef Expression
1 elpq 12097 . 2 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 nnz 11727 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
3 znq 12075 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ)
42, 3sylan 575 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ)
5 nnre 11358 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6 nngt0 11383 . . . . . . 7 (𝑥 ∈ ℕ → 0 < 𝑥)
75, 6jca 507 . . . . . 6 (𝑥 ∈ ℕ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
8 nnre 11358 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
9 nngt0 11383 . . . . . . 7 (𝑦 ∈ ℕ → 0 < 𝑦)
108, 9jca 507 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 0 < 𝑦))
11 divgt0 11221 . . . . . 6 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 < (𝑥 / 𝑦))
127, 10, 11syl2an 589 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 < (𝑥 / 𝑦))
134, 12jca 507 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦)))
14 eleq1 2894 . . . . 5 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ))
15 breq2 4877 . . . . 5 (𝐴 = (𝑥 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑥 / 𝑦)))
1614, 15anbi12d 624 . . . 4 (𝐴 = (𝑥 / 𝑦) → ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦))))
1713, 16syl5ibrcom 239 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴)))
1817rexlimivv 3246 . 2 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴))
191, 18impbii 201 1 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1656  wcel 2164  wrex 3118   class class class wbr 4873  (class class class)co 6905  cr 10251  0cc0 10252   < clt 10391   / cdiv 11009  cn 11350  cz 11704  cq 12071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-z 11705  df-q 12072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator