Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpqb | Structured version Visualization version GIF version |
Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.) |
Ref | Expression |
---|---|
elpqb | ⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpq 12714 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
2 | nnz 12342 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) | |
3 | znq 12691 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ) | |
4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ) |
5 | nnre 11980 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
6 | nngt0 12004 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 0 < 𝑥) | |
7 | 5, 6 | jca 512 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (𝑥 ∈ ℝ ∧ 0 < 𝑥)) |
8 | nnre 11980 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
9 | nngt0 12004 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 0 < 𝑦) | |
10 | 8, 9 | jca 512 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 0 < 𝑦)) |
11 | divgt0 11843 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 < (𝑥 / 𝑦)) | |
12 | 7, 10, 11 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 < (𝑥 / 𝑦)) |
13 | 4, 12 | jca 512 | . . . 4 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦))) |
14 | eleq1 2828 | . . . . 5 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ)) | |
15 | breq2 5083 | . . . . 5 ⊢ (𝐴 = (𝑥 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑥 / 𝑦))) | |
16 | 14, 15 | anbi12d 631 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦)))) |
17 | 13, 16 | syl5ibrcom 246 | . . 3 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴))) |
18 | 17 | rexlimivv 3223 | . 2 ⊢ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴)) |
19 | 1, 18 | impbii 208 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 class class class wbr 5079 (class class class)co 7271 ℝcr 10871 0cc0 10872 < clt 11010 / cdiv 11632 ℕcn 11973 ℤcz 12319 ℚcq 12687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-z 12320 df-q 12688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |